(Version 1.0: 2020-01-03)

目录

(Vei	rsion 1.0: 2020-01-03)	1
-,	简介	2
二、	特征	2
三、	管脚分配	4
	封装脚位图	4
	管脚描述	5
	PAD 图	8
	衬底必须接至 VSS	8
四、	存储器	9
	4.1 程序存储器	9
	4.2 数据存储器	10
	4.3 特殊功能寄存器	10
	4.4 特殊功能寄存器表	10
	4.5 特殊功能寄存器描述	12
五、	功能描述	43
	5.1 TCC/WDT 预分频器	43
	5.2 I/O 端口	44
	5.3 定时器	45
• \$	概述	45
• ;	功能描述	45
• ī	可编程相关寄存器组	46
	5.4 复位和唤醒	46
	5.5 中断	48
	中断输入电路	48
	5.6 振荡器	48
六、	绝对最大范围	49
七.	电气特性	49
八.	封装尺寸图	51
SOF	P24	51
SOF	P14	52
注意	第 :	52
附:	版本记录	52

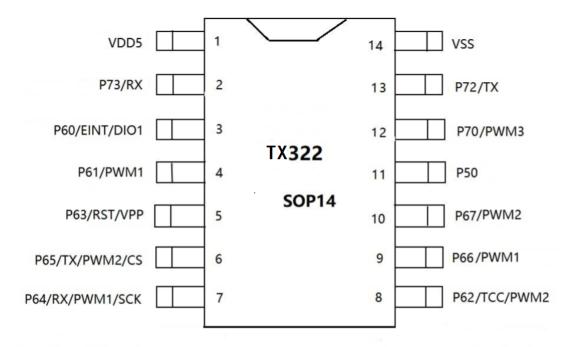
一、简介

TX322是一个具有低功耗和高速的8位微处理器。它的操作核心由RISC类体系结构实现。有一个脉冲宽度调制输出。同时也增强了单片机的其它内部特性,如暂停、唤醒功能、振荡器选择 和可编程分频器等,增加了单片机的使用灵活度,而这些特性也同时保证实际应用时只需要最 少的外部器件,进而降低了整个产品的成本。此单片机广泛被应用在红外遥控发射器、马达驱 动、工业控制、消费性产品和子系统控制器等场合。

采用 16 位精简指令集并拥有高达 256 字节的 RAM,程序可方便的访问控制器内部的 ROM 空间及 RAM 空间而不需要执行繁琐的换页功能。采用特殊功能寄存器与 RAM 统一寻址的方式。 TX322是属于一次可编程(One-Time Programmable, OTP)单片机,配合使用我们提供的程序 开 发工具,可简单有效的更新程序,给设计者提供了快速有效的开发途径。

二、特征

- 高性能、低功耗的8位微处理器
- · 先进的RISC结构
- 59条指令 大多数指令执行时间为单个指令周期(振荡频率/2)
- 外设特点
- 一个具有预分频器及中断功能的 8 位定时器
- 一个具有预分频器及中断功能的8位脉宽比较器
- 一个具有独立振荡器的内部看门狗
- 一个与 IO 口复用的外部中断输入
- 芯片内置晶体及电阻电容振荡器
- 烧录电路接口及程序代码保护功能
- 低电压复位(LVR)特性
- P5, P6, P7 口具有唤醒功能
- 3 通道 8 位的 PWM
- 1个 UART 接口
- 新增 Green mode, 进入 Green mode, 唤醒可由
 - 1. 外部中断(/INT);
 - 2. TCC 溢出中断;
 - 3. Timer1 比较器匹配中断;


此外, PWM1 / PWM2/ PWM3 于 Green-mode 仍然可以输出.

- 特殊的处理器特点
- 上电复位及掉电检测
- 片内经过标定的 RC 振荡器

- 片内/片外有3个硬件中断源
 - 1. 外部中断(/INT)。
 - 2. TCC 溢出中断。
 - 3. Timer1 比较器匹配中断。
 - 4. IO 口改变中断(从睡眠模式唤醒)
 - 5. WDT timeout 中断。
 - 6. Low-voltage detection 中断。
 - 7. PTMR1/PWM1, PTMR3/PWM3 比较器匹配中断。
 - 8. PTMR2/PWM2 比较器匹配中断。
 - 9. UART 中断。
- 16 级堆栈 (CALL or PUSH), 使用 32 * 8bit RAM (192 * 8bit 中的高 32 位)
- 两种睡眠模式,暂停与唤醒特性可以节省功耗
- 指令为 16 位宽,对所有寄存器、RAM 的访问都不需要分页;程序 ROM 也不需要分页
- 表格读取功能
- 直接和间接数据寻址模式
- 位操作指令
- 存储器
 - 4K * 16bit 程序存储器(OTP ROM)
 - 192 * 8bit 数据存储器 (user 空間 160x8 + stack 32x8)
 - 128 * 8bit 特殊功能寄存器
- IO 和封装
 - 22 个可用 IO
- 适用的温度范围: -40~85°C
- 工作电压范围: 1.8~5.5V
- 工作频率范围
 - i. RC 类型: 有8MHz、4MHz、1MHz、455KHz 可以选。
- TX322 25°C时的功耗:
 - 1. 正常模式: 在 5V/4MHz 时, 小于 1.5mA
 - 2. 睡眠模式: 小于 2uA

三、管脚分配

封装脚位图

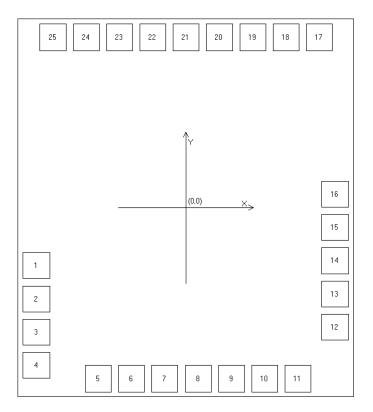
				1
VDD	1		24	GND
P73/RX	2		23	P72/TX
P74	3		22	P71
P75	4		21	P70/PWM3
P60/EINT/DIO1	5		20	P57
P61/PWM1	6		19	P56
P63/RST/VPP	7	тх 322	18	P55
P65/TX/PWM2/CS	8	SOP24	17	P54
P64/RX/PWM1/SCK	9	301 24	16	P53
P62/TCC/PWM2	10		15	P52
P66/PWM1	11		14	P51
P67/PWM2	12		13	P50

管脚描述

引脚名称	引脚号	I/O/P 类型	缓冲器 类型	功能			
P50		I/O	TTL	数字 I/O 引脚,可软件设为下拉			
P51		I/O	TTL	数字 I/O 引脚,可软件设为下拉			

P52	I/O	TTL	数字 I/O 引脚, 可软件设为下拉
P53	I/O	TTL	数字 I/O 引脚,可软件设为下拉
P54	I/O	TTL	数字 I/O 引脚,可软件设为下拉
P55	I/O	TTL	数字 I/O 引脚, 可软件设为下拉
P56	I/O	TTL	数字 I/O 引脚, 可软件设为下拉
P57	I/O	TTL	数字 I/O 引脚,可软件设为下拉
P60/EINT			
P60	I/O	ST/TTL	 数字 I/O 引脚,集电极开路输出与内部上下拉,IO 口改变从睡眠模式唤醒
EINT	I	ST	外部中断脚,下降沿触发
*TDIO1	I/O	ST	Testing interface DIO1(烧录数据脚)
P61 / PWM1			
P61	I/O	ST/TTL	 数字 I/O 引脚,集电极开路输出与内部上下拉,IO 口改变从睡眠模式唤醒
PWM1	О		PWMI 输出
P62/TCC / PWM2			
P62	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上下拉,IO 口改变从睡眠模式唤醒
TCC	I	ST	外部时钟与计数输入脚
PWM2	О		PWM2 输出
P63/RST			
P63	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上下拉, IO 口改变从睡眠模式唤醒
RST	I	ST	当选择复位脚时为复位功能,低电平复位
*VPP			OTP 烧录时,此脚是烧录脚 VPP, 7.3V 高压
P64/RX / PWM1			
P64	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上拉,IO 口改变从睡眠模式唤醒
RX	I	ST	UART RX
PWM1	О		PWM1 输出
*TSCK	I	ST	Testing interface SCK(烧录 CLK 脚)
P65/TX / PWM2			
P65	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上拉,IO 口改变从睡眠模式唤醒
TX	О		UART TX
PWM2	О		PWM2 输出
*TCS	I	ST	Testing interface CS(烧录 CS 脚)
P66 / PWM1			
P66	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上拉,IO 口改变从睡眠模式唤醒
PWM1	О		PWM1
P67 /PWM2			
P67	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上拉,IO 口改变从睡眠模式唤醒
PWM2	О		PWM2
P70 /PWM3			
P70	I/O	ST/TTL	数字 I/O 引脚,内部上拉,IO 口改变从睡眠模式唤醒
PWM3	О		PWM3
P71	I/O	TTL	数字 I/O 引脚,可软件设为上拉,IO 口改变从睡眠模式唤醒

P72/TX			
P72	I/O	ST/TTL	数字 I/O 引脚,集电极开路输出与内部上拉,IO 口改变从睡眠模式唤醒
TX	O		UART TX
P73/RX			
P73	I/O	ST/TTL	数字 I/O 引脚,内部上拉,IO 口改变从睡眠模式唤醒
RX	I	ST	UART RX
P74	I/O	TTL	数字 I/O 引脚,可软件设为上拉,IO 口改变从睡眠模式唤醒
P75	I/O	TTL	数字 I/O 引脚,可软件设为上拉,IO 口改变从睡眠模式唤醒
VDD	P		电源输入,烧录脚
VDDL	P		IC 的内核电压输出, 烧录脚,连接 0.1uF 的电容到 GND
VSS	P		接地端,烧录脚


图注: I = 输入 O = 输出 I/O = 输入/输出

P= 电源

-= 末使用 TTL=TTL 输入 ST = 施密特输入

注:1.实际管脚顺序以下面PAD 图为准

PAD 图

衬底必须接至 VSS

	PAD NAME	NO.	PAD NAME
1	p6[3]	14	p5[7]
2	p6[5]	15	p7[0]
3	p6[4]	16	p7[1]
4	p6[2]	17	p7[2]
5	p6[6]	18	VSS
6	p6[7]	19	VDD
7	p5[0]	20	VDD5
8	p5[1]	21	p7[3]
9	p5[2]	22	p7[4]
10	p5[3]	23	p7[5]
11	p5[4]	24	p6[0]
12	p5[5]	25	p6[1]
13	p5[6]		

四、存储器

本节讲述 TX322 的存储器。TX322 具有两个主要的存储器空间:数据存储器空间和程序存储器空间。此外,TX322 还有寄存器区对 IC 外设进行特定的操作。数据存储器空间及寄存器空间统一编址,并与程序存储器空间分开。

4.1 程序存储器

4K * 16bit 的 OTP ROM 空间,复位矢量地址为 0X000,硬件中断矢量地址为 0X003~0X01F。

复位入口地址	0X000
Low-voltage detection 中断入口地址	0X003
外部 INT 中断入口地址	0X005
IO 口改变唤醒中断入口地址	0X007
定时器 TCC 中断入口地址	0X009
看门狗 WDT 溢出中断入口地址	0X00B
PWP(TIMER1)中断入口地址	0X011
PTMR1/PWM1、PTMR3/PWM3 中断入	0X013
口地址 PTMR2/PWM2 中断入口地址	0X015
UART 中断入口地址	0X01D
程序存储器空间	0X020
	0XFFF

4.2 数据存储器

256 * 8bit 的 RAM 空间, 有两种寻址方式: 直接寻址及通过 INDF 间接寻址。

	0X17F
特殊功能寄存器空间	
	0X100
保留空间	0X0FF
	0X0C0
堆栈空间	0X0BF
	0X0A0
	0X09F
数据存储器空间	
	0X000

4.3 特殊功能寄存器

128 * 8bit 的特殊功能寄存器空间采用非连续编址的形式。对于没有对应寄存器的地址进行读写操作,结果未定义。

特殊功能寄存器只能采用直接寻址方式。

4.4 特殊功能寄存器表

名称	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
INDF	100h	用 FSR 的	内容寻址数	据存储器来	寻址该地址	单元(非实	际存在的寄	存器)			
TCC	101h	TCC 模块的	CC 模块的寄存器								
PCL	102h	程序计数器	序计数器(PC)的低字节								
STATUS	103h	RST	GP1	GP0	Т	P	Z	DC	С		
FSR	104h	间接数据存	存储器地址	指针	•		•				
P5D	105h	P5 数据锁	存器								
P6D	106h	P6 数据锁	存器								
P7D	107h	P7 数据锁	存器								
P5S	115h	读取 P5 的	引脚电平								
P6S	116h	读取 P6 的	引脚电平								
P7S	117h	读取 P7 的	引脚电平								
WUCON6	120h	WU67	WU66	WU65	WU64	WU63	WU62	WU61	WU60		
WUCON5	121h	WU57	WU56	WU55	WU54	WU53	WU52	WU51	WU50		
CONT(R/W)	122h	TS1	/INT	TS0	TE	PAB	PSR2	PSR1	PSR0		
OPEN_DRAIN	123h	OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60		
IOC5	125h	P5 数据方	句寄存器	,	1	•	'	1	•		
IOC6	126h	P6 数据方	句寄存器								
IOC7	127h	P7 数据方	句寄存器								
PULL_P5H	12Ah	/PH57	/PH56	/PH55	/PH54	/PD57	/PD56	/PD55	/PD54		
PULL_DOWN	12Bh	/PD63	/PD62	/PD61	/PD60	/PD53	/PD52	/PD51	/PD50		
T1CON	12Ch						TM1E	TM1P1	TM1P0		
PULL_HIGH	12Dh	/PH67	/PH66	/PH65	/PH64	/PH63	/PH62	/PH61	/PH60		
WDTCON	12Eh	EIS	EI_ES	WDTE	SLPC	WDT_CKS			WU7		
INTIE	12Fh	WDT_IE			ICIE	TM1IE		EXIE	TCIE		
PWM1_DC	130h	PWM1 占空	2比寄存器						•		
PWM2_DC	131h	PWM2 占雪	它比寄存器								
PWM1_PR	132h	PWM1 周邦	胡寄存器								
PWM2_PR	133h	PWM1 周昇	胡寄存器								
PWM1CON	134h	PEN2	PEN1	PS2[2]	PS2[1]	PS2[0]	PS1[2]	PS1[1]	PS1[0]		
PTMR1CON	135h	PTM1E	PTM1IE	PTM1IF	PTM2E	PTM2IE	PTM2IF	PO_INV	PTM12CA		
TMR1	13Eh	Timer1 模:	块的寄存器								
PWP	13Fh	脉宽设置部	子 存器								
PAL	14Bh	PA[6:0]							PA_SEL		
РАН	14Ch				PA[11]	PA[10]	PA[9]	PA[8]	PA[7]		
UA_CON	150h	UA_EN	UA_EN RX_EN RX_IE TX_IE BAUD16 TXOF/TXFRXF RXOF								
UA_BAUD	151h	UART Bau	d-rate regist	er	•	•	•	•	•		
UA_BUF	152h	UART data	register								
IO_PULL2	15Fh					/P7_PH					

名称	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IO_PULL2	15Fh					/P7_PH			
IO_SINK2	171h					P7_XS			P5H_XS
IO_FUNC	172h				F_CKO[1]	F_CKO[0]	F_UART	F_PWM[1]	F_PWM[0]
IO_BUF2	173h					P7_ST			P5H_ST
IO_SINK	174h	P523_XS	P501_XS	P67_XS	P66_XS	P645_XS	P623_XS	P61_XS	P60_XS
IO_BUF	175h	P523_ST	P501_ST	P67_ST	P66_ST	P645_ST	P623_ST	P61_ST	P60_ST
OSCCON	178h		GREEN						
GCKCON	17Ch	G_SYS	G_GIO	G_TMR1				G_UART	G_PWM
LVRCON	17Dh	LVR_ENB	LVD_F	LVD_IE	LVD2_ENB	FT_EN	LVS2	LVS1	LVS0
INTIF	17Fh	WDT_IF			ICIF	TM1IF		EXIF	TCIF
PWM3_DC	180h	PWM3 占约	区比寄存器						
PWM3_PR	182h	PWM3 周其	用寄存器						
PWM3CON	184h		PEN3				PS3[2]	PS3[1]	PS3[0]
PTMR3CON	185h	РТМ3Е	PTM3IE	PTM3IF				PO3_INV	

4.5 特殊功能寄存器描述

说明: • R: 可读, W: 可写, C: 可清零

• RESET: 复位状态

• U:表示无变化

• x: 表示不确定

A(累加器)

内部数据传输,或者指令操作数保持。它是一个不可寻址寄存器。

CONT(控制寄存器) (地址:0x122)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	TS1	/INT	TS0	TE	PAB	PSR2	PSR1	PSR0
R/W/C	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
RESET	1	0	1	1	1	1	1	1
WDT_out	1	0	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

Bit6(/INT) 中断使能位, Read Only。

0: 由指令 DISI 设置中断屏蔽;

1: 由指令 ENI/RETI 设置中断使能。

Bit7-Bit5(TS1-TS0) TCC 时钟源的选择位。

11: 内部指令周期做时钟源;

00: 由外部 TCC 脚来做时钟源。

01: OSCO 周期做时钟源; (When CKSRC = RCOSC)

10: reserved.

Bit4(TE) 外部 TCC 触发源选择位

0: 外部 TCC 上升沿计数;

1: 外部 TCC 下降沿计数。

Bit3(PAB)预分频器分配位。

0: 预分频器分配给 TCC;

1: 预分频器分配给 WDT, 当预分频器分配给 WDT 后, TCC 为 1:1 分频。

Bit0(PSR0)~Bit2(PSR20 TCC/WDT 预分频位

PSR2	PSR1	PSR0	TCC Rate	WDT Rate
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

INDF(间接寻址寄存器)(地址:0x100)

INDF 寄存器不是实际存在的寄存器。它用于间接地址的指针。任何对 INDF 进行操作的指令,实际上是存取由 RAM 选择寄存器 FSR 所指定的 RAM 内容。

TCC(定时寄存器) (地址:0x101)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	D7	D6	D5	D4	D3	D2	D1	D0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

此寄存器为 8 位定时器,可由程序进行读/写操作。它用于对内部时钟计数,并拥有可编程的预分器(最大 256 分频)。

● 以下例子为 TCC 从 0x20 开始,数到 0xFF 后进中断改变 P50 状态(1 、0 交替),中断的 频率为 11.1khz。

```
3 ORG
       0x0000
4 JMP
       START
ORG 0x0009
             ;TCC中断入口地址
6 ЈМР
      _INT_TCC
  _INT_TCC:
8
   MOV A, @0x20
10
       TCC, A
                  ;TCC重设 从0x20开始, 若无重设会从0开始
   VOM
       A, @0x01
11
   MOV
   XOR P5D, A
12
13
   CLR INTIF ;TCC中断标志清除
14
   RETI
16 ORG 0x0100
17
 START:
18
   CALL _INIT_IO ;设置I/O管脚, P5 output low
19
20
   MOV A, @0x20
21
                  ;TCC从0x20开始
   MOV TCC, A
22
23
        A, @0xA0
   MOV
24
   MOV
        CONT, A
                  ;内部指令周期做时钟源, 预分频器分配给TCC,TCC Rate=1:2;
25
26
        INTIE, 0
                 ;TCC中断允许
   BS
27
   ENI
        ;中断开启
28
29
   NOP
   JMP $-1;
```



```
Fosc= 10M, Fsys = 10M/2 = 5M
```

预分频 = 1:2

0x20 = 32, 256-32 = 224

TCC 中断时间 = 224((1/5M)*2) = 89.6us

PCL(程序计数器)和堆栈(地址:0x102)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

PC 和硬件堆栈为 16 位宽。

产生 4096×16 位的片内 OTP ROM 地址获取指令代码。

复位后 PC 所有位均设置为'1'。

- "ADD R2, A"允许相对地址被装入当前 PC,同时 PC 的高 8 位被清零。
- 任何有可能改变 PCL 的值的指令(例如: "ADD PCL, A", "MOV PCL, A", "BC PCL, 6", ...)("TBL"除外)都将导致 PC 的高 8 位被清零。因此,跳转限制在编程页的前 256 个程序存储空间。
- "TBL"允许相对地址被加载到当前 PC(PCL + A→PCL), PC 的高 8 位的值不变。因此, 跳转可以在编程页的任意 256 个程序存储空间。
- 除了改变 PCL 内容指令需要一个以上指令周期外(fclk/2),其余指令只要一个指令周期。

STATUS(状态寄存器) (地址:0x103)

状态寄存器包含 ALU 算术结果的状态和复位状态。

与其他寄存器相同,状态寄存器可以作为任何指令的目的操作数。如果状态寄存器作为一条指令的目的操作数,而这条指令又影响了 Z、DC 或 C 标志,那么就不允许对这 3 位进行写操作。这些位的置位或清零取决于器件的逻辑模块。此外,T 和 P 位是不能进行写操作的,所以当执行一条把状态寄存器作为目的操作数的指令时,其结果可能会与预想的不同。

因此,如果想改变状态寄存器的内容,建议使用位操作指令 BC、BS 半字节交换指令 SWAP 和 传送指令 MOVR,A,因为这些指令不影响 Z、C 或 DC 标志位。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	RST	GP1	GP0	T	P	Z	DC	С
R/W/C	R/W							
RESET	0	0	0	1	1	0	0	0
WDT_out	0	0	0	0	U	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Bit7(RST) 复位类型

0: 睡眠后从复位脚唤醒:

1: 睡眠后从 IO 口改变唤醒。

Bit6(GP1) 通用读写位。

Bit5(GP0) 通用读写位。

Bit4(T) 超时标志位

0: 发生了 WDT 超时;

1: 上电复位或执行 WDTC 指令、SLEP 指令后被置 1。

Bit3(P) 掉电标志位

0: 执行了 SLEP 指令;

1: 上电复位或执行 WDTC 指令。

Bit2(Z) 零标志位

0: 算术或者逻辑运算的结果不为零;

1: 算术或者逻辑运算的结果为零。

Bit1(DC) 辅助进位/借位位(ADD, SUB 指令)

0: 未发生执行结果的低 4 位向高 4 位进位;

1: 发生了执行结果的低 4 位向高 4 位进位。

Bit0(C) 进位/借位位(ADD, SUB 指令)

0: 未发生执行结果向高位进位;

1: 发生了执行结果向高位进位。

注:对于循环(RLC、RRC)指令,该位装载源寄存器的最高位或最低位。

FSR(RAM 选择寄存器) (地址:0x104)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	D7	D6	D5	D4	D3	D2	D1	D0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Bits 0~7 用于在间址寻址下选择寄存器(地址: 00~FF)。

如果没有使用间址寻址方式,R4可以用作一个8位通用读/写寄存器。

P5D (端口 5 寄存器) (地址:0x105)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P57	P56	P55	P54	P53	P52	P51	P50
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

P6 D(端口 6 寄存器) (地址:0x106)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P67	P66	P65	P64	P63	P62	P61	P60/EINT
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

P7 D(端口 7 寄存器) (地址:0x107)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol			P75	P74	P73	P72	P71	P70
R/W/C			R/W	R/W	R/W	R/W	R/W	R/W
RESET			0	0	0	0	0	0
WDT_out			0	0	0	0	0	0
Wake_up			U	U	U	U	U	U

P5S (端口 5 狀態) (地址:0x115)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P57	P56	P55	P54	P53	P52	P51	P50
R/W/C	R	R	R	R	R	R	R	R

P6S (端口 6 狀態) (地址:0x116)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P67	P66	P65	P64	P63	P62	P61	P60
R/W/C	R	R	R	R	R	R	R	R

P7S (端口 7 狀態) (地址:0x117)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol			P75	P74	P73	P72	P71	P70
R/W/C			R	R	R	R	R	R

WUCON6 (P6 唤醒控制寄存器) (地址:0x120)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	WU67	WU66	WU65	WU64	WU63	WU62	WU61	WU60
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

IO 口输入改变唤醒控制位

Bit7(WU67) P67 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit6(WU66) P66 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit5(WU65) P65 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit4(WU64) P64 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit3(WU63) P63 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit2(WU62) P62 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit1(WU61) P61 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit0(WU60) P60 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

WUCON5 (P5 唤醒控制寄存器) (地址:0x121)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Symbol	WU57	WU56	WU55	WU54	WU53	WU52	WU51	WU50				
R/W/C	R/W											
RESET	0	0	0	0	0	0	0	0				
WDT_out	0	0	0	0	0	0	0	0				
Wake_up	U	U	U	U	U	U	U	U				

IO 口输入改变唤醒控制位

Bit7(WU57) P57 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit6(WU56) P56 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit5(WU55) P55 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit4(WU54) P54 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit3(WU53) P53 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit2(WU52) P52 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit1(WU51) P51 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

Bit0(WU50) P50 口输入改变唤醒控制位

0: 禁止唤醒

1: 使能唤醒

OPEN_DRAIN (集电极开路控制寄存器) (地址:0x123)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	OD67	OD66	OD65	OD64	-	OD62	OD61	OD60
R/W/C	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

集电极开路使能,分别控制各个端口的集电极开路是否使能,为1使能。

Bit7(OD67) P67 集电极开路控制位

0: 关闭 P67 的集电极开路;

1: 打开 P67 的集电极开路。

Bit6(OD66) P66 集电极开路控制位

0: 关闭 P66 的集电极开路;

1: 打开 P66 的集电极开路。

Bit5(OD65) P65 集电极开路控制位

0: 关闭 P65 的集电极开路;

1: 打开 P65 的集电极开路。

Bit4(OD64) P64 集电极开路控制位

0: 关闭 P64 的集电极开路;

1: 打开 P64 的集电极开路。

Bit2(OD62) P62 集电极开路控制位

0: 关闭 P62 的集电极开路;

1: 打开 P62 的集电极开路。

Bit1(OD61) P61 集电极开路控制位

0: 关闭 P61 的集电极开路;

1: 打开 P61 的集电极开路。

Bit0(OD60) P60 集电极开路控制位

0: 关闭 P60 的集电极开路;

1: 打开 P60 的集电极开路。

IOC5 (P5 端口控制寄存器) (地址:0x125)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P57	P56	P55	P54	P53	P52	P51	P50

R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake up	U	U	U	U	U	U	U	U

[&]quot;1"设置相关 I/O 管脚为输入脚;

IOC6 (P6 端口控制寄存器) (地址:0x126)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P67	P66	P65	P64	P63	P62	P61	P60
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

[&]quot;1"设置相关 I/O 管脚为输入脚;

IOC7 (P7 端口控制寄存器) (地址:0x127)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol				P74/PWM	P73	P72	P71	P70
R/W/C	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

[&]quot;1"设置相关 I/O 管脚为输入脚;

PULL P5H (P57~P54 上拉下拉控制寄存器) (地址:0x12A)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	/PH57	/PH56	/PH55	/PH54	/PD57	/PD56	/PD55	/PD54
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

上拉或下拉使能,分别控制各个端口的下拉电阻是否使能,为0使能。

Bit7(/PH57) P57 上拉控制位

0: 打开 P57 的上拉;

1: 关闭 P57 的上拉。

Bit6(/PH56) P56 上拉控制位

0: 打开 P56 的上拉;

1: 关闭 P56 的上拉。

[&]quot;0"设置相关 I/O 管脚为输出脚。

[&]quot;0"设置相关 I/O 管脚为输出脚。

[&]quot;0"设置相关 I/O 管脚为输出脚。

Bit5(/PH55) P55 上拉控制位

0: 打开 P55 的上拉;

1: 关闭 P55 的上拉。

Bit4(/PH54) P54 上拉控制位

0: 打开 P54 的上拉;

1: 关闭 P54 的上拉。

Bit3(/PD57) P57 下拉控制位

0: 打开 P57 的下拉;

1: 关闭 P57 的下拉。

Bit2(/PD56) P56 下拉控制位

0: 打开 P56 的下拉;

1: 关闭 P56 的下拉。

Bit1(/PD55) P55 下拉控制位

0: 打开 P55 的下拉;

1: 关闭 P55 的下拉。

Bit0(/PD54) P54 下拉控制位

0: 打开 P54 的下拉;

1: 关闭 P54 的下拉。

PULL DOWN (下拉控制寄存器) (地址:0x12B)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	/PD63	/PD62	/PD61	/PD60	/PD53	/PD52	/PD51	/PD50
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

下拉使能,分别控制各个端口的下拉电阻是否使能,为0使能。

Bit7(/PD63) P63 下拉控制位

0: 打开 P63 的下拉;

1: 关闭 P63 的下拉。

Bit6(/PD62) P62 下拉控制位

0: 打开 P62 的下拉;

1: 关闭 P62 的下拉。

Bit5(/PD61) P61 下拉控制位

0: 打开 P61 的下拉;

1: 关闭 P61 的下拉。

Bit4(/PD60) P60 下拉控制位

0: 打开 P60 的下拉;

1: 关闭 P60 的下拉。

Bit3(/PD53) P53 下拉控制位

0: 打开 P53 的下拉;

1: 关闭 P53 的下拉。

Bit2(/PD52) P52 下拉控制位

0: 打开 P52 的下拉;

1: 关闭 P52 的下拉。

Bit1(/PD51) P51 下拉控制位

0: 打开 P51 的下拉;

1: 关闭 P51 的下拉。

Bit0(/PD50) P50 下拉控制位

0: 打开 P50 的下拉;

1: 关闭 P50 的下拉。

T1CON (Timer1 控制寄存器) (地址:0x12C)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol						TM1E	TM1P1	TM1P0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Bit2(TM1E): TIMER1 是否使能

0: 禁止

1: 允许

Bit1~Bit0(TM1P1-0): TIMER1 预分频比选择 (对 Fosc/4 进行预分频)

TM1P1	TM1P0	分频
0	0	1:1
0	1	1:4
1	0	1:8
1	1	1:16

PULL HIGH (上拉控制寄存器) (地址:0x12D)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	/PH67	/PH66	/PH65	/PH64	/PH63	/PH62	/PH61	/PH60
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1

Wake up	U	U	U	U	U	U	U	U
1								

上拉使能,分别控制各个端口的上拉电阻是否使能,为0使能。

Bit7(/PH67) P67 上拉控制位

0: 打开 P67 的上拉;

1: 关闭 P67 的上拉。

Bit6(/PH66) P66 上拉控制位

0: 打开 P66 的上拉;

1: 关闭 P66 的上拉。

Bit5(/PH65) P65 上拉控制位

0: 打开 P65 的上拉;

1: 关闭 P65 的上拉。

Bit4(/PH64) P64 上拉控制位

0: 打开 P64 的上拉;

1: 关闭 P64 的上拉。

Bit3(/PH63) P63 上拉控制位

0: 打开 P63 的上拉;

1: 关闭 P63 的上拉。

Bit2(/PH62) P62 上拉控制位

0: 打开 P62 的上拉;

1: 关闭 P62 的上拉。

Bit1(/PH61) P61 上拉控制位

0: 打开 P61 的上拉;

1: 关闭 P61 的上拉。

Bit0(/PH60) P60 上拉控制位

0: 打开 P60 的上拉;

1: 关闭 P60 的上拉。

WDTCON (WDT 控制寄存器) (地址:0x12E)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	EIS	EI_ES	WDTE	SLPC	WDT_CKS			WU7
R/W/C	R/W	R/W	R/W	R/W	R/W			R/W
RESET	0	0	1	1	0			0
WDT_out	0	0	1	1	U			U
Wake_up	U	U	1	1	U			U

Bit7(EIS) 外部中断选择脚

0: 为 P60 通用 IO 口

1: 为外部中断脚

Bit6(EI ES) 外部中断触发选择

0: INT 中断脚在下降沿时中断

1: INT 中断脚在上升沿时中断

Bit5(WDTE) WDT 使能位,只有在 OPTION CODE 中的 ENWDT 位为 1 时才起作用

0: WDT 禁止

1: WDT 允许

WDT 控制位。WDTE 位仅在代码选项位 ENWDT 为"0"时无效。也就是说,如果 ENWDT 位为"0",不管 WDTE 位如何设置,WDT 都是无效。WDTE 位仅在代码选项位 ENWDT 为"1"时有效。如果 ENWDT 代码选项位为"1",则 WDT 由 WDTE 位设置为无效/有效。0=WDT 无效, 1=WDT 有效。WDTE 位是可读可写的。

Bit4(SLPC) SLEEP2 模式控制, 当写 0 时进入 SLEEP2 模式.

此位由硬件在唤醒信号的下降沿置 1,由软件进行清 0。SLPC 用于控制振荡器振荡。当由高到低变化时,振荡器停振(振荡器停止工作,控制器进入 SLEEP2 模式)。当由低到高变化时,振荡器起振(控制器从 SLEEP2 模式唤醒)。为了确保振荡器的输出稳定,一旦振荡器从停振到再次起振,需要大约 18ms(振荡器建立时间,OST)的延迟,再执行下一条程序指令。OST 在从休眠模式唤醒时就被激活,不管代码选项位 ENWDT 是否设置为"0",OST 都会唤醒。如果代码选项位 ENWDT 为"1",WDT 在唤醒后有效。SLPC 位是可读可写位。

Bit3(WDT CKS) WDT 时钟源选择位

0: 内部 14K RC 振荡

1: 内部系统主频

Bit0(WU7) P70~P75 IO 口改变唤醒使能位

0: 禁止 P70~P75 IO 口改变唤醒

1: 允许 P70~P75 IO 口改变唤醒

INTIE(中断允许寄存器) (地址:0x12F)

INTIE 寄存器是可读写的寄存器,包含 TMR0 溢出、INT 下降沿外部中断、及 TMR1 匹配中断等各种使能控制位。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	WDT_IE			ICIE	TM1IE		EXIE	TCIE
R/W/C	R/W			R/W	R/W		R/W	R/W
RESET	0			0	0		0	0
WDT_out	0			0	0		0	0
Wake_up	U			U	U		U	U

Bit7(WDT IE) 看门狗溢出中断允许

0: 看门狗溢出中断禁止

1: 看门狗溢出中断允许

Bit4(ICIE) IO 口改变中断允许

0: IO 口改变中断禁止

1: IO 口改变中断允许

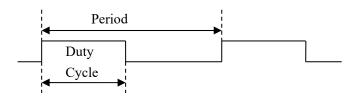
Bit3(TM1IE) TIMER1 中断允许 0: TIMER1 和 PWP 匹配中断禁止 1: TIMER1 和 PWP 匹配中断允许

Bit1(EXIE) 外部中断允许

- 0: 外部中断禁止
- 1: 外部中断允许

Bit0(TCIE) TCC 中断允许

- 0: TCC 溢出中断禁止
- 1: TCC 溢出中断允许
- 下列例子 P60 为外部中断脚,每进一次外部中断(P60high 变 low)时改变 P50(1、0 交替)。


```
3 ORG 0X0000
4 JMP _START
<sup>5</sup> ORG 0X0005 ;外部INT中断入口地址
6 JMP EXINT
 EXINT:
  MOV A, @0X01
  XOR P5D, A
10
11
       INTIF, 1 ;标志清除
12
  RETI
13
14 ORG
         0X0100
15 START:
  CALL _INIT_RAM
17
  CALL INIT IO
                   ;P60设为外部中断脚input pull high, P50 output low
18
         A, @0XB0
  MOV
19
  MOV
       WDTCON, A ; P60为外部中断脚, 外部中断下降沿触发
20
21
  MOV
       A, @0X02
22
  MOV
         INTIE, A ;外部中断允许
23
   ENI
                    ;中断开启
24
25
   . . .
```

● 下列例子 P60 为唤醒脚,进入睡眠时(Sleep2)使用 P60 唤醒,唤醒后执行下一行使 P50 改变 (1、0 交替)。

```
2 ORG 0X0000
3 JMP START
4 ORG 0x0007
             ;10口改变唤醒中断入口地址
5 JMP _INT_WPIN
7_INT_WPIN:
   CLR INTIF ;标志清除
   RETI
10
11 ORG
         0X0100
 START:
12
13
   CALL _INIT_RAM
14
         _INIT_IO ;P60设为唤醒脚input pull high, P50 ouput low
   CALL
15
16
  MOV
         A, @0x10
17
         WDTCON, A ;WDT禁止
  MOV
18
19
   MOV
         A, @0x10
20
  MOV
       INTIE, A ;ICIE IO口改变中断允许
21
         WUCON6, 0 ; P60 口输入改变唤醒使能
   BS
22
                   ;中断开启
   ENI
23
24
                   ;进Sleep2睡眠,等P60唤醒后执行下一行
   BC
        WDTCON, 4
25
   MOV A, @0x01
26
   XOR P5D, A
27
   JMP
         $-2
```

PWM1 DC (PWM 占空比寄存器) (地址:0x130)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Duty Cycle = (PWM DC/PWM PR)*100%

PWM2_DC (PWM2 占空比寄存器) (地址:0x131)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0

Wake_up	U	U	U	U	U	U	U	U	
---------	---	---	---	---	---	---	---	---	--

PWM1_PR (PWM 周期寄存器) (地址:0x132)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

PWM2_PR (PWM2 周期寄存器) (地址:0x133)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

PWM1CON (PWM1、2 控制寄存器) (地址:0x134)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	PEN2	PEN1]	PS2[2:0] PS1[2:0]]
R/W/C	R/W	R/W	R/W			R/W		
RESET	0	0		000		000		
WDT_out	0	0	000				000	
Wake_up	U	U	U			U U		

Bit7(PEN2) PWM2 输出使能位。

0:禁止 PWM2 输出

1: 允许 PWM2 输出

Bit6(PEN1) PWM1 输出使能位。

0: 禁止 PWM1 输出

1: 允许 PWM1 输出

Bit[5:3](PS2[2:0]) PWM2 时钟预分频(注:是对系统频率再分频,而不是振荡频率)Bit[2:0](PS1[2:0]) PWM1 时钟预分频(注:是对系统频率再分频,而不是振荡频率)

注意: PWM 的使能,还需要将 PTMR 打开,否则输出不了 PWM。

PS[2]	PS[1]	PS[0]	Clock (Hz)	Period
0	0	0	Fsys/1	
0	0	1	Fsys /2	
0	1	0	Fsys /4	
0	1	1	Fsys /8	
1	0	0	Fsys /16	

1	0	1	Fsys/32
1	1	0	Fsys /64
1	1	1	Fsys /128

若系统设为二分频, 8 bits PWM 频率范围

最快: PWM 频率=Fosc /2 / 255 = Fosc / 510,

Duty=0, 1/255, 2/255, ..., 255/255

最慢: PWM 频率=Fosc /256 /255 = Fosc / 65280,

Duty=0, 1/255, 2/255, ..., 255/255

PWM 的计算, 以下以 PWM1 举例:

PWM 频率=(振荡频率 / PWM1 时钟分频) / PWM1 PR 的值

占空比= (PWM DC/PWM PR) *100%

例如:振荡频率 = 455KHz 预分频为0即2分频(假设Fsys = Fosc/2)

PWM1 PR = 6 PWM1 DC = 2

PWM 频率 = 455K / 2 / 6 = 37.9KHz

占空比 = 2/6*100% = 33.3%

PTMR1CON (PTMR1/PTMR2 控制寄存器) (地址:0x135)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	PTM1E	PTM1IE	PTM1IF	PTM2E	PTM2IE	PTM2IF	PO_INV	PTM12CA
R/W/C	R/W	R/W	R/C	R/W	R/W	R/C	R/W	R/W
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Bit7(PTM1E): PTIMER1 是否使能

0: 禁止 PTIMER1 1: 打开 PTIMER1

Bit6(PTM1IE): PTIMER1 中断是否使能

0: 禁止 PTIMER1 中断

1: 使能 PTIMER1 中断

Bit5(PTM1IF): PTIMER1 中断标志

0:没有 PTIMER1 中断

1: 有 PTIMER1 中断

Bit4(PTM2E): PTIMER2 是否使能

0: 禁止 PTIMER2 1: 打开 PTIMER2

Bit3(PTM2IE): PTIMER2 中断是否使能

0: 禁止 PTIMER2 中断

1: 使能 PTIMER2 中断

Bit2(PTM2IF): PTIMER2 中断标志

0:没有 PTIMER2 中断 1:有 PTIMER2 中断

Bitl(PO INV): PWM 输出是高有效还是低有效选择

0: 平时为低, PWM 输出高有效 1: 平时为高, PWM 输出低有效

Bit0(PTM12CAS): PTIMER1 和 PTIMER2 8 位模式与 16 位模式选择

- 0: 独立的 8 位模式
- 1: 层叠的 16 位模式
 - (1) 16bits PWM 的周期寄存器 MSB=PWM2 PR, LSB=PWM1 PR.
 - (2) 16bits PWM 的占空比寄存器 MSB=PWM2_DC, LSB=PWM1_DC.
 - (3) 16bits PWM, Period (PWM16_PR) MSB=PWM2_PR, LSB=PWM1_PR. Duty (PWM16_DC) MSB=PWM2_DC, LSB=PWM1_DC.

PWM16 频率=(振荡频率 / PWM1 时钟分频) / PWM16_PR 的值占空比= (PWM16 DC / PWM16 PR) * 100%

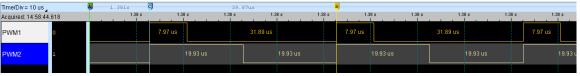
若系统设为二分频, 16bits PWM 频率范围

最快: PWM16 频率=Fosc /2 /(256 2 -1) = Fosc /131070,

Duty=0, 1/65535, 2/65535, ..., 65535/65535

最慢:PWM16频率=Fosc /256 /(256²-1) = Fosc /16776960, Duty=0, 1/65535, 2/65535, ..., 65535/65535

(4) $(PWM2 PR, PWM1 PR) \ge (PWM2 DC, PWM1 DC)$


● 以输出 PWM1 站控比 20%, PWM2 站控比 50% 为例

```
10
11
   MOV
        A, @20
12
   MOV
         PWM1 DC, A
13
   MOV
        A, @100
14
   MOV
         PWM1 PR, A
15
16
   MOV
        A, @50
17
        PWM2 DC, A
   MOV
18
   MOV
        A, @100
19
   MOV
        PWM2 PR, A
20
21
   MOV A, @0x00
22
        IO FUNC, A ;设置PWM输出脚 PWM1=P61, PWM2=P62
   MOV
23
24
   MOV A, @0xC9
25
   MOV PWM1CON, A ; PWM1, 2 输出使能, 时钟预分频=FSYS/2
26
27
   MOV A, @0x90
28
        PTMR1CON, A;PTIMER1,2 使能(务必开启 开启后pwm才会动作),
   MOV
29
30
```

Fosc= 10M

 $F_{SYS} = 10M/2 = 5M$ 预分频 = 5M/2 = 2.5M

PWM 频率 = (2.5M/100) = 25kHz(40us)

下述例子为 PTM12CAS 16 模式(PWM2 输出)

```
10
   MOV
11
         A, @20
12
   VOM
         PWM1 DC, A
13
         A, @100
   MOV
14
   MOV
         PWM1 PR, A
15
16
   MOV
         A, @50
17
         PWM2 DC, A
   MOV
18
   MOV
         A, @100
19
   MOV
         PWM2 PR, A
20
21
         A, @0x00
   MOV
22
   MOV
         IO FUNC, A
                     ;设置PWM输出脚 PWM1=P61, PWM2=P62
23
24
   VOM
         A, @0xC9
25
         PWM1CON, A ; PWM1,2 输出使能, 时钟预分频=FSYS/2
   MOV
26
27
   MOV
         A, @0x91
28
         PTMR1CON, A;PTIMER1,2 使能(务必开启 开启后pwm才会动作),
   VOM
29
                      ;PTM12CAS 16位模式 由PWM2 输出
30
    . . .
```

PWM 16DC = (MSB=PWM2 DC = 50, LSB=PWM1 DC = 20) = 0x3214 = 12820PWM 16 PR = (MSB=PWM2 PR =100, LSB=PWM1 PR=100) =0x6464 = 25700 占空比= (12820/25700) * 100% = 0.49%

Fosc = 10M, Fsys = 10M/2 = 5M

预分频 = 5M/2 = 2.5M

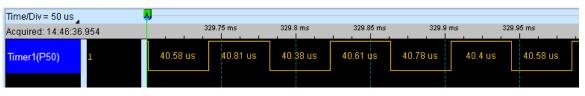
PTM12CAS 频率 = (2.5M/25700) = 97.27Hz(10.28ms)

TMR1 (TIMER1 寄存器) (地址:0x13E)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	TMR17	TMR16	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10
R/W/C	R/W							

RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

该寄存器中为 TIMER1 计数值, 当计到和 PWP 相等时重新从 00 开始。


PWP (脉宽预置寄存器)(地址:0x13F)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	PWP7	PWP6	PWP5	PWP4	PWP3	PWP2	PWP1	PWP0
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

PWP7~PWP0设置成与波特率时钟期望宽度。

● 以下例子为 TIMER1 从 0 开始,数到 100 后进中断改变 P50 状态(1 、0 交替),中断的频率为 25khz。

```
3 ORG
       0x0000
4 JMP
       _START
<sup>5</sup>ORG 0x0011 ; PWP (TIMER1) 中断入口地址
6 ЈМР
     INT TIMER1
  INT TIMER1:
   MOV A, @0x01
10
   XOR P5D, A
11
        INTIF, 3 ;TIMER1中断标志清除
   BC
12
   RETI
13
14 ORG 0x0100
15
 START:
16
   CALL INIT IO ;设置I/O管脚, P5 output low
17
18
   MOV A, @0x04
19
   MOV T1CON, A ;TIMER1使能,预分频1:2
20
21
   MOV A, @0X08
22
        INTIE, A ;TIMER1中断允许
   MOV
23
   MOV A, @100
24
   MOV PWP,A ; PWP设100
25
26
   ENI;中断开启
27
28
   NOP
        $-1
   JMP
```


Fosc = 10M, Fsys = 10M/2 = 5M 预分频 = 1:2

TIMER1 中断时间 = 100((1/5M)*2) = 40us

PAL (表格指针低 8 位) (地址: 0x14B)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	A7	A6	A5	A4	A3	A2	A1	A0
R/W/C	R/W							
RESET	X	X	X	X	X	X	X	X
WDT_out	X	X	X	X	X	X	X	X
Wake_up	U	U	U	U	U	U	U	U

PAH (表格指针高 8 位) (地址: 0x14C)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	A15	A14	A13	A12	A11	A10	A9	A8
R/W/C	R/W							
RESET	X	X	X	X	X	X	X	X
WDT_out	X	X	X	X	X	X	X	X
Wake_up	U	U	U	U	U	U	U	U

此查表方法可在程序存储器的任意空间使用,不受任何限制,表格指针必须先行设定,其方式是将表格的低7位地址放在表格指针寄存器PAL[7:1]中。PAL[0]用来表示表格的高低字节,PAL[0]为0是低字节,PAL[0]为1是高字节。将表格的高6位地址放在表格指针寄存器PAH[5:0],这个寄存器存放表格较高的6位地址。在设定完表格指针后,表格数据可以使用"MOVC"指令从当前程序所在的存储器中来查表读取。

例:

CODE TAB:

 MOV
 PAL, A
 ; 将偏移量送入低 8 位指针

 MOV
 A, @(CODE_TAB_DB >> 7)
 ; 取表格指针地址的高 6

 ; 位地址

MOV PAH, A ; 并送入表格指针的高位地址

MOV A, @((CODE_TAB_DB << 1)& 0X00FF) ; 取表格指针地址

; 的低 7 位送到 PAL[7:1]中

 ADD
 PAL, A
 ; 加偏移量并送入低 8 位指针中

 MOV
 A,@0
 ; 判断是否有进位

 JBC
 STATUS.C
 ; 有进位就加 1

 JBC
 STATUS,C
 ; 有进位就加 1

 MOV
 A,@1
 ; 没有进位就加 0

ADD PAH,A ;

MOVC ; 读数查表

RET

CODE TAB DB: ; 低位 8 位数据在前

DB 0X014, 0X00F ;K1,K2 DB 0X00B, 0X00C ;K3,K4 DB 0X00E, 0X016 ;K5,K6 DB 0X000, 0X001 ;K7,K8

UA_CON (UART 控制寄存器) (地址:0x150)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	UA_EN	RX_EN	RX_IE	TX_IE	BAUD16	TXOF/TXF	RXF	RX_OV
R/W/C	R/W	R/W	R/W	R/W	R/W	R/C	R	R/C
RESET	0	0	0	0	0	0	0	0

Bit7(UA EN) UART 模块使能位

0: 禁止 UART 模块

1: 使能 UART 模块

Bit6(RX EN) UART 接收模块使能位

0: 禁止 UART 的接收模块

1: 使能 UART 的接收模块

Bit5(RX IE) UART 接收模块中断使能位

0: 禁止 UART 接收模块的中断

1: 使能 UART 接收模块的中断

Bit4(TX IE) UART 发送模块中断使能位

0: 禁止 UART 发送模块的中断

1: 使能 UART 发送模块的中断

Bit3(BAUD16) UART 的波特率主频设置位

0: UART 的波特率主频为 Fsys/2

1: UART 的波特率主频为 Fsys/8

Bit2(TXOF/TXF) UART 的发送中断标志和发送标志

0: 当有开中断时,需要软件清零,若没有开中断,则为发送的空闲状态

1: 当有开中断时,为发送完成的标志,需软件清零;若没有开中断,则为发送状态标志,表示正在发送,发送完后为 0.

Bit1(RXF) UART 接收标志位

0: 表示接收空闲状态

1: 表示正在接收

Bit0(RX OV) UART 接收完成标志位

0: 需软件清零

1: UART 接收完成标志

UA_BAUD (UART 的波特率设置寄存器) (地址:0x151)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Symbol	BAUD7	BAUD6	BAUD5	BAUD4	BAUD3	BAUD2	BAUD1	BAUD0
R/W/C	R/W							
RESET	U	U	U	U	U	U	U	U

波特率值的计算如下:

当 UA_CON.BAUD16=1 时,波特率值= (Fsys/8)/(BAUD+1),BAUD>0.

当 UA_CON.BAUD16=0 时,波特率值= (Fsys /2) / (BAUD +1), BAUD > 1. 例如:

振荡 Fsys = 12MHZ/2,假设波特率 = 115200HZ.,UA_CON.BAUD16=0 时 BAUD = (12M/2/2)/115200 - 1 = 12 = 0x19

UA BUF (UART 的数据寄存器) (地址:0x152)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
R/W/C	R/W							
RESET	U	U	U	U	U	U	U	U


此寄存器为UART发送和接收的数据寄存器。

注意: 我们的 UART 为半双工 UART

● 透过 UART 循环传送 4 笔数据(0x55, 0xAA, 0x00, 0xFF), 预设波特率值 9600。(注意以下例 子为同一片 IC TX 跟 RX 对接)。

```
10 ORG
     0x0000
11 JMP
     _START
12 ORG 0X001D ; UART中断入口地址
  BC UA_CON, 2 ;发送中断标志和发送标志清除
  BC UA_CON, 0 ;UART接收完成标志清除
15
  RETI
16
17 _START:
18
   CALL _INIT_RAM
19
   CALL _INIT_IO ;设置I/O管脚 ,P72=TX 设为 ouput, P73=RX 设为 input
20
21
  MOV A, @OXEO
22
  MOV UA CON, A ;UART模块使能,UART接收模块 及 接收模块中断使能,Baud16=0
23
24
  MOV A, @103
25
   MOV UA BAUD, A ; UART 的波特率9600=(Fsys/2)/(UA BAUD+1)
26
27
        P7D, 2
                ;UART TX 初始要在High
28
  ENI
                  ;中断开启
29
30 LOOP:
31
  INC COUNT1
  MOV A, COUNT1
33
  CALL _DATA_TBL
34 _UART_WRITE:
35
  MOV UA BUF, A
                   ;UART传送 DATA TBL的值
36
  MOV DATA, A
37
38
  JBC UA CON, 2
                    ;判斷TX是否傳送完成
39
  JMP $-1
40
                    ;接收完成后进中断,清除标志
41
  UART READ:
42
  MOV A, UA_BUF
                    ;判断接收的与传送的值是否相同
43
   XOR A, DATA
44
   JBS STATUS, Z
45
   JMP ERR
                    ;若不相同执行_ERR
47
  MOV A, @0x04
48
   XOR A, COUNT1
49
   JBC STATUS, Z
50
   CLR COUNT1
51
   JMP LOOP ;下一笔资料
52
53
 DATA TBL:
    TBL
55
    NOP
56
            @0x55
    RETL
57
    RETL
           @OXAA
    RETL
           @OXFF
    RETL
           @0X00
61 ERR:
  BS P5D, 1
  JMP $-1
```

TX 起始高电位, start bit 时低电位, stop bit 时高电位。

Fosc = 4M, Fsys = 4M/2 = 2M

UA CON.BAUD16=0 时,波特率值=(Fsys/2)/(BAUD+1)

波特率值=9600

BAUD = (2M/2)/9600-1 = 103us

IO PULL2 (上拉控制寄存器 2) (地址:0x15F)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol					/P7_PH			
R/W/C					R/W			
RESET					1			
WDT_out					1			
Wake_up					U			

上拉使能,分别控制各个端口的上拉电阻是否使能,为0使能。

Bit3(/P7 PH) P75~P70 上拉控制位

0: 打开 P75~P70 的上拉;

1: 关闭 P75~P70 的上拉。

IO SINK2(IO SINK2 设定寄存器) (地址:0x171)

_				· -	,			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol					P7_XS			P5H_XS
R/W/C					R/W			R/W
RESET					0			0
WDT_out					0			0
Wake_up					U			U

Bit3(P7 XS) 当 P75~P70 口设成输出, 使能该 IO 口 Sink 能力.

0: 正常输出

1: 加强 P75~P70 的 Sink 输出

Bit0(P5H XS) 当 P57~P54 口设成输出, 使能该 IO 口 Sink 能力.

0: 正常输出

1: 加强 P57~P54 的 Sink 输出

IO_FUNC(IO 特殊功能设定寄存器) (地址:0x172)

	Bit 7	Bit 6	Bit 5	Bit 4-3	Bit 2	Bit 1-0
Symbol				F_CKO [1:0]	F_UART	F_PWM[1:0]
R/W/C				R/W	R/W	R/W
RESET				00	0	00
WDT_out				00	0	00
Wake_up				U	U	U

Bit4-3(F CKO) 设定振荡从 P66 除频输出

00: P6601: Fosc10: Fosc / 211: Fosc / 4

Bit2(F UART) 设定 UART 的功能脚

0: RX=P64; TX=P651: RX=P73; TX=P72.

Bit1-0(F PWM) 选择 PWM 输出脚

00: PWM1 = P61, PWM2 = P62

01: PWM1 = P64, PWM2 = P65

10: PWM1 = P66, PWM2 = P67

11: 保留

IO_BUF2(IO Buffer 设定寄存器) (地址:0x173)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol					P7_ST			P5H_ST
R/W/C					R/W			R/W
RESET					1			1
WDT_out					1			1
Wake_up					U			U

Bit3(P7 ST) 设定 P75~P70 的 IO 缓冲区

0: P75~P70 为 CMOS 输入

1: 施密特输入, 当做输出时有串 330 的电阻

Bit0(P5H ST) 设定 P57~P54 的 IO 缓冲区

0: P57~P54 为 CMOS 输入

1: P57~P54 为施密特输入, 当做输出时有串 330 的电阻

IO SINK (IO SINK 设定寄存器) (地址:0x174)

_								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P523_XS	P501_XS	P67_XS	P66_XS	P645_XS	P623_XS	P61_XS	P60_XS
R/W/C	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

Bit7(P523 XS) 当 P52, P53 口设成输出, 使能该 IO 口的 Sink 能力.

- 0: P52 与 P53 为正常输出
- 1: 加强 P52 与 P53 的 Sink 输出

Bit6(P501 XS) 当 P50, P51 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P50 与 P51 为正常输出
- 1: 加强 P50 与 P51 的 Sink 输出

Bit5(P67 XS) 当 P67 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P67 为正常输出
- 1: 加强 P67 的 Sink 输出

Bit4(P66 XS) 当 P66 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P66 为正常输出
- 1: 加强 P66 的 Sink 输出

Bit3(P645 XS) 当 P64, P65 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P64 与 P65 为正常输出
- 1: 加强 P64 与 P65 的 Sink 输出

Bit2(P623 XS) 当 P62, P63 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P62 与 P63 为正常输出
- 1: 加强 P62 与 P63 的 Sink 输出

Bit1(P61 XS) 当 P61 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P61 为正常输出
- 1: 加强 P61 的 Sink 输出

Bit0(P60 XS) 当 P60 口设成输出, 使能该 IO 口 Sink 能力.

- 0: P60 为正常输出
- 1: 加强 P60 的 Sink 输出

IO_BUF(IO Buffer 设定寄存器) (地址:0x175)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	P523_ST	P501_ST	P67_ST	P66_ST	P645_ST	P623_ST	P61_ST	P60_ST
R/W/C	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

Bit7(P523 ST) 设定 P52, P53 buffer

0: CMOS 输入

1: 施密特输入, 在输出时会串一个 330 左右的电阻再输出

Bit6(P501 ST) 设定 P50, P51 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个 330 左右的电阻再输出

Bit5(P67 ST) 设定 P67 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个 330 左右的电阻再输出

Bit4(P66 ST) 设定 P66 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个 330 左右的电阻再输出

Bit3(P645 ST) 设定 P64, P65 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个330左右的电阻再输出

Bit2(P623 ST) 设定 P62, P63 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个 330 左右的电阻再输出

Bit1(P61 ST) 设定 P61 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个330左右的电阻再输出

Bit0(P60 ST) 设定 P60 buffer

- 0: CMOS 输入
- 1: 施密特输入, 在输出时会串一个330左右的电阻再输出

OSCCON(OSC 控制寄存器) (地址:0x178)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol		GREEN						
R/W/C		R/W						
RESET		0						
WDT_out		0						
Wake_up		U						

Bit6(GREEN) 绿色模式控制位

- 0: 睡眠后进入普通模式, 及所有工作都停止
- 1:睡眠后进入绿色模式,指令停止工作,但 TCC 和 Timer1 及 PWM 还会继续工作注意:此位只能用 BC 或 BS 操作

GCKCON(功能模块使能控制寄存器) (地址:0x17C)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	G_SYS	G_GIO	G_TMR1				G_UART	G_PWM
R/W/C	R/W	R/W	R/W				R/W	R/W
RESET	1	1	1				1	1
WDT_out	1	1	1				1	1
Wake_up	U	U	U				U	U

Bit7(G SYS) 系统模块使能控制位,

可控制的寄存器为: IO_SINK、IO_SINK2、IO_BUF、IO_BUF2、 IO_FUNC、LDOCON、LVRCON、和 ACHCON。

0: 禁止系统模块 1: 使能系统模块

Bit6(G GIO) IO 模块使能控制位

可控制的寄存器为: WUCON6、WUCON5、PULL_P5H、OPN_DRN、OPN DRN2、PULL DOWN、PULL HIGH、 IO PULL2 和 WDTCON。

0: 禁止 IO 模块 1: 使能 IO 模块

Bit5(G TMR1) Timer1 模块使能控制位

可控制 Timer1 模块的寄存器为: T1CON、TMR1、PWP

0: 禁止 Timer1 模块、UART 模块

1: 使能 Timer1 模块、UART 模块

Bitl(G UART) UART 模块使能控制位

可控制的寄存器为 UA CON, UA BAUD 和 UA BUF

0: 禁止 UART 模块

1: 使能 UART 模块

Bit0(G PWM) PWM 模块使能控制位

可控制的寄存器为: PWMx_DC、PWMx_PR、PWMxCON.

0: 禁止 PWM 模块

1: 使能 PWM 模块

LVRCON(LVR 控制寄存器) (地址:0x17D)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	LVR_EN	LVD_F	LVD_IE	LVR2_EN	FT_EN	LVS2	LVS1	LVS0
R/W/C	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	0	1	0	1	1	1
WDT_out	0	U	0	1	0	1	1	1
Wake_up	U	U	U	U	U	U	U	U

Bit7(LVR ENB) 低电压复位使能

0: 使能低电复位

1: 禁止低电压复位

Bit6(LVD F) 低电压检测标志位

0: 没有低于设定的电压.

1: 检测到有低于设定的电压

Bit5(LVD IE) 低电压检测中断使能位

0: 中断不使能

1: 中断使能

Bit4(LVR2 EN) 低电压检测使能位

0: 使能低电压检测

1: 禁止低电压检测

注意: 当使能低电压检测时,会有 20uA 到 30uA 的功耗 当低电压检测使能时,低电压复位自动使能为 2.0V 复位

Bit3(FT EN) 低电压复位触发脉宽使能位

0: 没有触发脉宽,有低电压就复位

1: 有触发脉宽,触发脉宽大于 960uS

Bit2-0(LVS) 低电压复位和低电压检测的电压选择

当低电压检测没有开时,低电压复位测 VDDL 的电压,000 的复位电压为 2.0V 当低电压检测使能后,低电压复位开启为 2.0V,低电压检测是测的 VDD 的电压

000 : 4.4v 111 :2.9V

ISR (INTIF: 中断标志寄存器)(地址:0x17F)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	WDT_IF			ICIF	TM1IF		EXIF	TCIF
R/W/C	R/W			R/W	R/W		R/W	R/W
RESET	0			0	0		0	0
WDT_out	0			0	0		0	0
Wake_up	U			U	U		U	U

读此寄存器的结果为 IOCF 和 ISR 的逻辑与。

Bit7(WDT IF) WDT 溢出中断标志位

0: 没有 WDT 溢出中断

1: 有 WDT 溢出中断

Bit4(ICIF) IO 口改变中断标志

0: IO 口改变没有中断

1: IO 口改变有中断

Bit3(TM1IF) Timer1 中断标志

0: 没有中断

1: 有中断

Bit1(EXIF) 外部中断标志

0: 外部没有中断1: 外部有中断

Bit0(TCIF) TCC 中断标志

0: TCC 没有中断1: TCC 有中断

PWM3 DC (PWM3 占空比寄存器) (地址:0x180)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	0	0	0	0	0	0	0	0
WDT_out	0	0	0	0	0	0	0	0
Wake_up	U	U	U	U	U	U	U	U

PWM3_PR (PWM3 周期寄存器) (地址:0x182)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0
R/W/C	R/W							
RESET	1	1	1	1	1	1	1	1
WDT_out	1	1	1	1	1	1	1	1
Wake_up	U	U	U	U	U	U	U	U

PWM3CON (PWM3、4 控制寄存器) (地址:0x184)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol		PEN3				PS3[2:0]		
R/W/C		R/W				R/W		
RESET		0				000		
WDT_out		0				000		
Wake_up		U				U		

Bit6(PEN3) PWM3 输出使能位。

0: 禁止 PWM3 输出

1: 允许 PWM3 输出

Bit[2:0](PS3[2:0]) PWM3 时钟预分频(注:是对系统频率再分频,而不是振荡频率)

PTMR3CON (PTMR3/PTMR4 控制寄存器) (地址:0x185)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Symbol	PTM3E	PTM3IE	PTM3IF				PO_INV	
R/W/C	R/W	R/W	R/C				R/W	
RESET	0	0	0				0	
WDT_out	0	0	0				0	

					l		
1 1 1 1	I TT	I TT	T T		l	I TT	
Wake up		1 11			l	I I I	
make up					l		

Bit7(PTM3E): PTIMER3 是否使能

0: 禁止 PTIMER3 1: 打开 PTIMER3

Bit6(PTM3IE): PTIMER3 中断是否使能

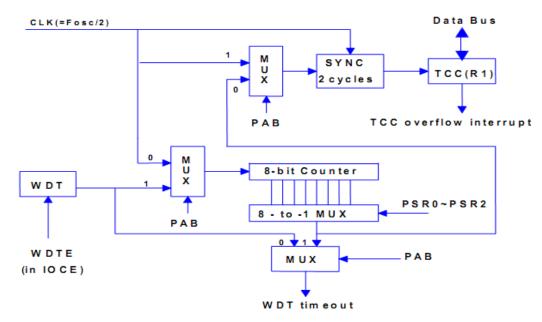
0: 禁止 PTIMER3 中断 1: 使能 PTIMER3 中断

Bit5(PTM3IF): PTIMER3 中断标志

0: 没有 PTIMER3 中断 1: 有 PTIMER3 中断

Bit4(PTM4E): PTIMER4 是否使能

0: 禁止 PTIMER4 1: 打开 PTIMER4


Bit1(PO INV): PWM3 输出是高有效还是低有效选择

0: 平时为低, PWM3 输出高有效 1: 平时为高, PWM3 输出低有效

五、功能描述

5.1 TCC/WDT 预分频器

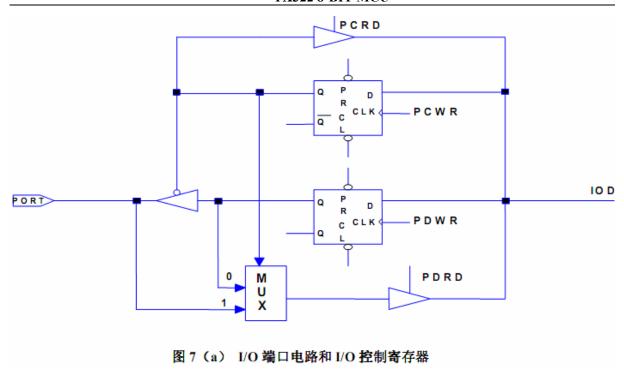
有一个 8bit 计数器可以作为 TCC 或 WDT 的分频器。这个预分频器在同一时刻只能提供给 TCC 或 WDT 之一使用,CONT 寄存器的 PAB 位用于决定预分频器通过每次写入 TCC 的指令清除。当分配给 WDT 模式时,WDT 和预分频器由指令 WDTC 和 SLEP 进行清 0。

TCC 和 WDT 的模块图

R1(TCC)是一个8bit 定时器/计数器。TCC 在每个指令周期(无预分频)加1。

WDT 是一个自由运行的片内 RC 振荡器。即使是振荡器关闭(例如:在休眠模式),WDT 仍然保持运行。在正常操作或者休眠模式,WDT 溢出(如果有效)将导致复位。在正常模式下,WDT 在任何时候都可以通过软件编程设置为无效或有效(如果代码选项位 ENWDT 为"1")。参考 IOCE 寄存器的 WDTE 位。没有预分频器时,WDT 的时间输出周期大约是 18MS。

5.2 I/O 端口

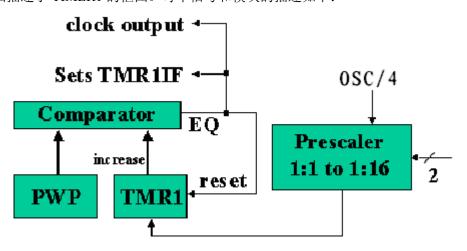

I/O 寄存器组,端口 5~端口7,是双向三态 I/O端口。

P50~P57、P60~P63 通过软件控制可以具有内部下拉。

P60~P67、P70~P75 通过软件控制可以具有内部上拉。

P60~P67、P70~P75 通过软件控制可以具有唤醒功能。

通过编程控制 I/O 控制寄存器组(IOC5~IOC7),I/O 端口可以被定义为"输入"或"输出"管脚。I/O 寄存器组和 I/O 控制寄存器组都是可读可写的。下图描述了 I/O 接口电路。注意在读取 I/O 端口时输入和输出管脚的读取路径是不同的。


5.3 定时器

• 概述

定时器 1(TMR1)是一个 8 位时钟计数器,它带一个可编程的分频器。TMR1 可读写,任何复位情况均清 0。在使用中,为了降低功耗,可以通过设置 TMR1EN[T1CON<2>]位为 0 关闭 TMR1。

• 功能描述

下图描述了 TIMER1 的框图。每个信号和模块的描述如下:

OSC/4: 输入时钟

预分频器: 由 T1P1 和 T1P02(T1CON<1,0>)决定分频率为 1:1、1:4、1:8 或 1:16。它

可以在写入 TMR1, T1CON 或任何复位的情况下被清 0。

PWP: 脉冲宽度预置寄存器。预先写入波特率时钟期望宽度。

定时器 1 寄存器, TMR1 加 1 直到它与 PWP 值相等,然后清为 0。 TMR1: 比较器: PWP 和 TMR1 相等改变输出状态,同时将置 TMR1IF 为 1。

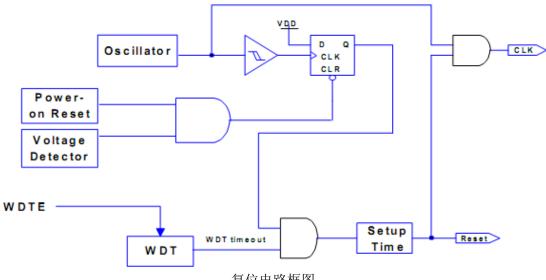
可编程相关寄存器组

TMR1 的相关状态/数据寄存器

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR1/RE	TMR17	TMR16	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10
PWP/RF	PWP7	PWP6	PWP5	PWP4	PWP3	PWP2	PWP1	PWP0
T1CON/IOCC	0	0	0	0	0	TM1E	TM1P1	TM1PO

TMR1:定时器寄存器,TMR17~TMR10 加 1 直到与 PWP 相同,然后 TMR1 清 0 PWP: 脉冲宽度预置寄存器。PWP7~PWP0 为预先写入波特率时钟期望宽度值

T1CON: TIMER1 控制寄存器 TM1E (BIT2): Timer1 允许位


TM1P1 和 TM1P0 (BIT1~0): Timer1 为 FSCO 预分频位

TM1P1	TM1P0	Prescaler Rate
0	0	1:1
0	1	1:4
1	0	1:8
1	1	1:16

5.4 复位和唤醒

复位的原因有:

- (1) 上电复位
- (2) WDT 溢出(如果有效)

复位电路框图

在检测到复位信号后,设备将保持一个大约 36ms (振荡器起振时间)复位时间的状态。一 旦复位发生,以下功能将被执行:

- 振荡器正在运行或者开始运行。
- 程序计数器(R2)设置为全"1"。
- 当电源打开, R3 的 5~6 位和 R4 的高 2 位被清 0。
- 所有 I/O 端口的管脚被设置为输入模式(高阻抗状态)
- WDT 和预分频器清 0。
- 如果代码选项 ENWDT 为"1", WDT 有效。
- CONT 寄存器的 BIT3、6 清 0, IOCE 寄存器的 BIT0、4~5 设置为"1"。
- 清除 R3F 的 BIT0 和 IOCF 寄存器的 BIT0。

注意: VDD=3V, 振荡器起振时间为 36ms ± 30%

执行 SLEP 指令(命名为 SLEEP1 模式)可以进入休眠模式(省电模式)。进入休眠模式时,WDT(如果有效)被清除但仍然保持运行。WDT 溢出(如果有效)就唤醒并复位。R3的T、P标志位可判断复位(唤醒)的原因。

除了基本的 SLEEP1 模式,TX3222 还有一种休眠模式 2,由清 IOCE 寄存器的"SLPC" 位产生,命名为 SLEEP2 模式。在 SLEEP2 模式下,控制器可由下列情况唤醒:

- (a) 任何一个唤醒管脚为 0 均可唤醒控制器,当唤醒后,控制器将继续执行在线程序。 在进入 SLEEP2 模式之前,触发源(P60~P67)的唤醒功能需要进行设置(例如: 输入管脚)并且使其有效(例如:上拉、唤醒控制)。必须注意的是,在唤醒后, 如果代码选项位 ENWDT 为"1",WDT 是有效的。在唤醒后应该通过软件控制 WDT 的操作(设置为无效或有效)。
- (b) WDT 溢出(如果有效)。一旦唤醒,将导致控制器复位。

复位时状态寄存器 T、P 位状态

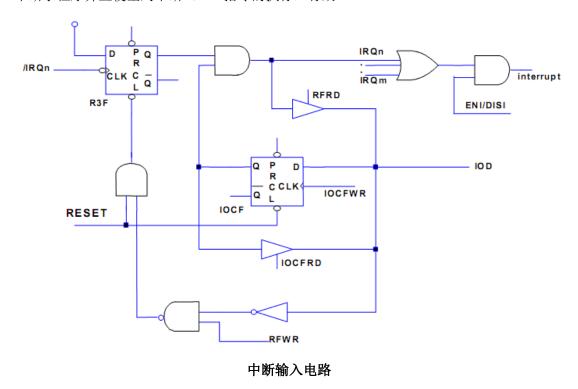
以下溢出情况,将会引起复位: 1.电源上电。2.WDT溢出。

表复位后半T和P值

Reset Type	Т	P
Power on	1	1
WDT during Operation mode	0	P
WDT wake-up during SLEEP1 mode	0	0
WDT wake-up during SLEEP2 mode	0	P
Wake-Up on pin change during SLEEP2 mode		

^{*}p:复位前值

表 不同事件对 T、P 影响


Event	T	P
Power on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEEP instruction	1	0
Wake-Up on pin change during SLEEP2 mode	P	P

5.5 中断

TX322 有以下中断:

- (1) 低电压检测中断
- (2) 外部中断
- (3) IO 口改变唤醒中断
- (4) TCC 溢出中断
- (5) WDT 溢出中断
- (6) Timer1 比较器匹配中断
- (7) PWM1与PWM3中断
- (8) PWM2 中断
- (9) UART 中断

R3F 是中断状态寄存器,它记录中断标志位的中断请求。IOCF 是中断屏蔽寄存器。全局中断由指令 ENI 设置有效,由 DISI 指令设置为无效。当中断产生时(当允许时),它将使下一条指令从各自的中断地址处开始执行。在执行中断服务子程序时,通过查询 R3F 寄存器的标志决定中断源。在离开中断服务子程序之前,应该通过软件清除中断标志位并且使能中断以免重复中断。中断状态寄存器(R3F)中的标志位的置 1 与它的屏蔽位的状态以及 ENI 指令的执行无关。注意,读 R3F 内容是 R3F 与 IOCF 的逻辑与的输出。RETI 指令离开中断子程序并且使全局中断(ENI 指令的执行)有效。

5.6 振荡器

1.振荡模式

TX322 能在内部 RC 振荡模式 (IRC) 下运行。

2.内部 RC 振荡模式

选择内部 RC 振荡模式时,可在烧录时选择 100K、200K、400K、455K、1M、2M、3M、4M、6M、8M、10M、12M、16M、20M 的频率

六、绝对最大范围

(所有电压参考GND)

项目	符号	额定值	单位
耐压范围	V_{DD}	0~6	V
输入/输出电压	$V_{\rm I}/V_{\rm O}$	GND-0.3~VDD+0.3	V
工作温度	T_{DD}	- 40 ∼ 85	°C
存放温度	T _{ST}	-20 ~ 125	°C

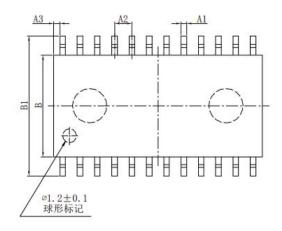
七. 电气特性

交流电气特性 (T_A=0℃~70℃, V_{DD}=3V & 5V)

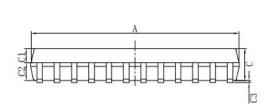
参数	符号	条件	最小	典型	最大	单位
Input CLK duty cycle	Dc1k		45	50	55	%
Instruction cycle time	Tins	XTAL Type	125		DC	ns
(CLKS= "0")		RC Type	500		DC	ns
TCC input period	Ttcc	Note 1	(Tins+20)/N			ns
Input pin setup time	Tset			0		ns
Input pin hold time	Thold			20		ns
Output pin delay time	Tdelay			50		ns

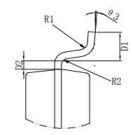
注意: N=预分频系数

直流电气特性 (T_A=0℃~70℃, V_{DD}=3V & 5V, LDO = 3.0V)

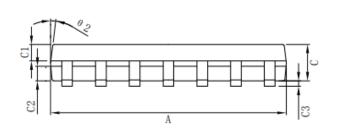

佐旦	符号 参数				曲刑	最大	单位
117.7			条件	最小	典 空	取入	半江
V_{DD}	Operating Voltage		LDO on 3V fsys=4MHz LVR disabled	2.0		6.0	V
עע י	operating voltage		LDO off fsys=4MHz LVR disabled	2.0		3.6	'
Fxt	Supply Oscillator	3V	One Cycle with two clocks	DC		20	MHz
FXt	Crystal	5V		DC		20	МПZ
Т	Input Leakage Current	3V	$V_{\rm IN} = V_{\rm DD}, V_{\rm SS}$			1	۸
IIL1	for input pins	5V				1	uA
Lagr	On a rating gunnly aurment	3V	Fosc = 32KHz, output pin floating,	·	30		11.Λ
Icc1	Operating supply current	5V	input pins at VDD, WDT disabled		40		uA

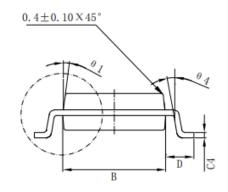
		3V	Fosc = 4MHz, output pin floating,		1.3		
Іссз	Operating supply current	5V	input pins at VDD, WDT disabled		2.0		mA
_		3V	Fosc = 4MHz, output pin floating,		1.3		
Icc4	Operating supply current	5V	input pins at VDD, WDT enabled		2.0		mA
_	0 11 0	3V	output pin floating, input pins at		1		
Istb1	Standby Current	5V	VDD, WDT disabled, LVR disabled		1		UA
т.	C+ 11 C	3V	output pin floating, input pins at		3		
Istb2	Standby Current	5V	VDD, WDT enabled, LVR disabled		3		uA
т	Carrell Comment	3V	output pin floating, input pins at		3		TTA
Іѕтвз	Standby Current	5V	VDD, WDT disabled, LVR enabled		3		UA
т	Ct on the Comment	3V	output pin floating, input pins at		5		1
Istb4	Standby Current	5V	VDD, WDT enabled, LVR enabled		5		uA
V	Toward High Voltage	3V		1.5			V
V_{IH1}	Input High Voltage	5V		2.5] v
W.	Toward High Wells on	3V	-P70,P71 input			3.0	v
$V_{\rm IH2}$	Input High Voltage	5V				3.0	
V	Tourset I am Valtana	3V				0.6	V
V_{IL1}	Input Low Voltage	5V				1.0] v
V _{IHX}	Clock Input High Voltage	3V	OSCI		1.52		V
V IHX	Clock input fight voltage	5V	03C1		1.76] ^v
V_{ILX}	Clock Input Low Voltage	3V	OSCI		0.76		V
V ILX	Clock input low voltage	5V	0301		1.0		\ \ \
V _{OH1}	P5 Output High Voltage	3V	Іон = 5mA		2.4		V
V OH1	rs output fight voltage	5V	TOH — SIMA		4.4] ^v
Vovo	P6 、 P7 Output High	3V	Ion = 8mA		2.4		V
V _{OH2}	Voltage	5V	TOH - OIIIA		4.4] ^v
V _{OL1}	Output Low Voltage	3V	Iol = 10mA		0.6		V
V OL1	Output Low vortage	5V	TOL - TOMA		0.25] ^v
T	Dull-high augment	3V	Dull-high active input pip at Vac		30		11.Λ
Ірн	Pull-high current		-Pull-high active, input pin at Vss		100		uA

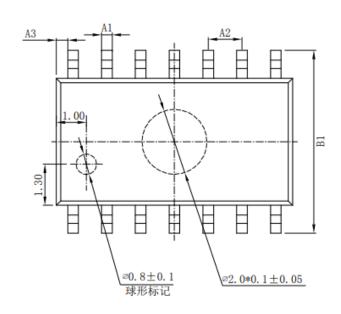

八. 封装尺寸图

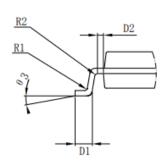

SOP24

标注	最小(mm)	最大(mm)	标注 尺寸	最小(mm)	最大(mm)	
A	15. 19	15. 39	C4	0. 246	0. 262	
A1	0. 40	06TYP	D	1. 34	1. 44	
A2	1. 22	1. 32	D1	1. 21TYP		
A3	0. 45	7TYP	D2	0. 18TYP		
В	7. 40	7. 60	R1	0. 3	OTYP	
B1	10. 206	10. 406	R2	0. 20	OTYP	
C	2. 13	2. 33	θ 1	12°	TYP4	
C1	0. 938	1. 038	θ 2	12° TYP4		
C2	1. 192	1. 292	θ 3	0° ~ 8°		
C3	0. 145	0. 205				








SOP14

标注	最小(mm)	最大(mm)	大寸 标注	最小(mm)	最大(mm)
A	8. 55	8. 75	C4	0. 193	0. 213
A1	0.356	0. 456	D	0. 95	1. 15
A2	1.27	TYP	D1	0.40	0.70
A3	0. 31	12TYP	D2	0. 20TYP	
В	3. 80	4. 00	R1	0. 2	OTYP
B1	5. 80	6. 20	R2	0. 2	0TYP
С	1.40	1.60	θ 1	8°	~ 12° TYP4
C1	0.60	0.70	θ2	8°	~ 12° TYP4
C2	0. 55	0.65	θ 3	0°	~ 8°
C3	0. 05	0. 25	θ 4	4°	~ 12°

注意:

- 1. 以上信息如有更新,将不另做通知,请用户在使用前先确定手中的资料是否为最新版本。
- 2. 对于错误或不恰当操作所导致的后果,我们将不承担责任。

附: 版本记录

版别	日期	更新内容	页次	备注
V1.0	2020-01-03	正式版本		