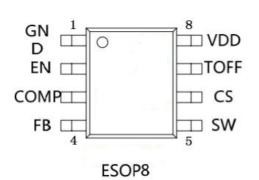

基于 TX621X 设计的 LED 恒流应用指导书


方案特点

- 宽输入电压: 3.6V-60V (TX6210) 3.6V-100V (TX6211/6212)
- 支持 PWM
- 高效率: 95%
- 内置 VDD 稳压管
- 关断时间可调

- 专利的过温保护模式
- 内置软启动,可靠性高,VDD 欠压 保护
- 恒流精度高,负载调整率和线性调整率高达±2%
- 外扩 MOS 可支持 6A 开关电流

管脚排列

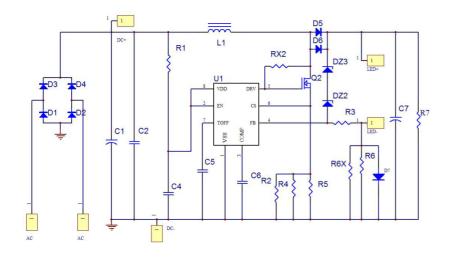
管脚描述

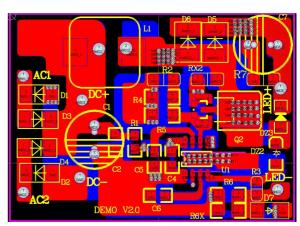
芯片 型号		引脚定义						
	芯片地 GND	PWM 调 光脚 EN	补偿脚 COMP	LED 反 馈脚 FB	MOS 开 关脚	MOS 电 流采样 CS	关断时 间设定 TOFF	芯片电 源 VDD
TX6210	1	2	3	4	5	6	7	8
TX6212	1	2	3	4	5	6	7	8
TX6211	1	2	3	4	5	6	7	8

注: 内置 MOS 芯片底部散热焊盘接 SW 脚

TX621 应用手册 V03

目录	: ····································
1. TX	621X 系列快速选型表······3
2. TX6	621X 典型应用······3
1)	TX621X DEMO 原理图和 PCB 图······3
2)	TX6211 外扩 MOS 应用 DEMO BOM 清单······4
3)	TX6211 外扩 MOS 典型应用测试数据 ······4
4)	TX6210/6212 内置 MOS 应用 DEMO BOM 清单······5
5)	TX6210 内置 MOS 典型应用测试数据5
3. TX	621X 系列设计指南······6
1)	芯片 VDD 参数,如何给 VDD 供电 ··································
2)	芯片的极限参数说明 ·····8
3)	芯片使用 PWM 调光 ·····9
4)	芯片 Layout 注意事项······10
5)	《TX621X 电感外围参数计算器》使用步骤和说明书······12
6)	芯片调试基本步骤14
7)	应用中常见问题解答15

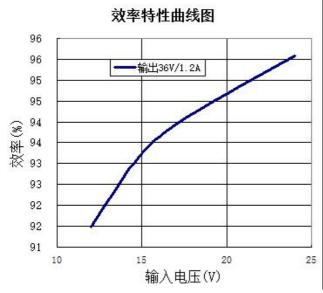

1. TX621X 系列快速选型表

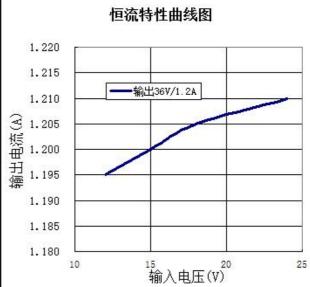

型号	输入电压	开关管电流	输出功率	驱动方式	效率	调光方式	封装
TX6211	3. 6-100	≤6A	≤60W	外扩 MOS	≤95%	PWM 调光	SOP8
TX6210	3. 6-60	≤2A	≤30W	内置 MOS	≤95%	PWM 调光	ESOP8
TX6212	3. 6-100	≤1.3A	≤25W	内置 MOS	≤95%	PWM 调光	ESOP8

2. TX621X 典型应用 DEMO

2) TX621X 应用 DEMO 对应 PCB 图

1) TX621X 应用 DEMO 原理图(内置 MOS 时短路 RX2)



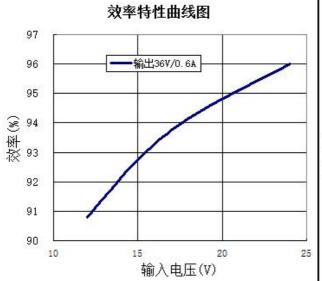


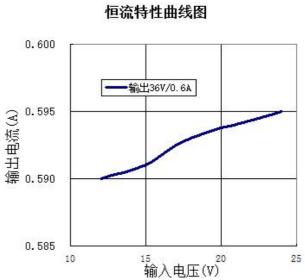
3) TX6211外置 MOS 应用 DEMO BOM 清单

型号:TX6211			规格: Vin=DC(12-24)V;Vo=36V;Io=1.2A	设计:	
NO.	Part Types	Symbol	Description	Qty.	Unit
1	贴片电阻	R1	3. 3K±5% 0805 0. 125W	1	Pcs
2	贴片电阻	R3	5. 1K±5% 0805 0. 125W	1	Pcs
3	贴片电阻	R2, R4, R5	R2、R4、R5 并联总电阻为 0.033R±1%/1206/0.25W	3	Pcs
4	贴片电阻	R6, R6X	0R420±1% 1206 0.25W	2	Pcs
5	贴片电阻	R7	20K±5% 1206 0.25W	1	Pcs
5	贴片电阻	RX2	NC	1	Pcs
6	贴片电容	C4	2. 2uF±10%/25V/X7R/0805	1	Pcs
7	贴片电容	C5	33pF±10%/25V/X7R/0805	1	Pcs
8	贴片电容	C6	8. 2nF±10%/25V/X7R/0805	1	Pcs
9	电解电容	C1	100uF/50V (φ 6*11)	1	Pcs
10	电解电容	C7	220uF/50V (φ 6*11)	1	Pcs
11	稳压二极管	DZ2	短路	0	Pcs
12	^ໄ 尼上似官	DZ3	47V/LL-34	1	pcs
13	贴片二极管	D5	5. 00A/60V/SS56/SMB	1	Pcs
14	贴片二极管	D7	1000V/1A M7 SMA	1	Pcs
15	电感	L1	L=33uH/ φ=1.0mm 铁硅铝磁环尺寸 18*12*10mm	1	Pcs
16	N-MOS	Q1	DTU40N06 40A/60V/16mR	1	Pcs
17	IC	U1	TX6211/SOP-8	1	Pcs

4) TX6211外置 MOS 应用 DEMO 测试数据





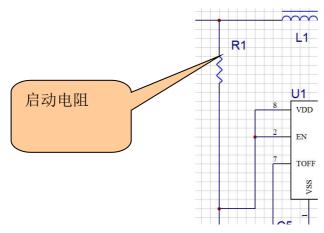


5) TX6210 内置 MOS 的 BOM 清单

型号	型号:TX6210		规格: Vin=DC(12-24)V;Vo=36V;Io=600mA	设计:	
NO.	Part Types	Symbol	Description	Qty.	Unit
1	贴片电阻	R1	3. 3K±5% 0805 0. 125W	1	Pcs
2	贴片电阻	R3	5. 1K±5% 0805 0. 125W	1	Pcs
3	贴片电阻	R2, R4, R5	R2、R4、R5 并联总电阻为 0.05R±1% 1206 0.25W	2	Pcs
4	贴片电阻	R6, R6X	0.82R±1% 1206 0.25W	1	Pcs
5	贴片电阻	R7	20K±5% 1206 0.25W	1	Pcs
5	贴片电阻	RX2	OR 短路	1	Pcs
6	贴片电容	C4	2. $2uF \pm 10\%/25V/X7R/0805$	1	Pcs
7	贴片电容	C5	$33 \text{pF} \pm 10\% / 25 \text{V/X7R} / 0805$	1	Pcs
8	贴片电容	C6	8. $2 \text{nF} \pm 10\% / 25 \text{V/X7R} / 0805$	1	Pcs
9	电解电容	C1	47uF/50V(φ6*11)	1	Pcs
10	电解电容	C7	100uF/50V (φ 6*11)	1	Pcs
11	44.17.17.12.12.12.12.12.12.12.12.12.12.12.12.12.	DZ2	短路	0	Pcs
12	→ 稳压二极管 	DZ3	47V/LL-34	1	pcs
13	贴片二极管	D5	5. 00A/60V/SS56/SMB	1	Pcs
14	贴片二极管	D7	1000V/1A M7 SMA		Pcs
15	电感	L1	$L=33uH/\Phi=0.7mm$		Pcs
16	IC	U1	TX6210/ES0P-8	1	Pcs

3. TX621X 系列设计指南

1) 芯片 VDD 参数,如何设计 VDD 线路


VDD 嵌位电压	VDD 内置稳压管最大电流	VDD 工作电流
5. 5V	10mA	1.3mA

从 621X 系列的规格书中可知, 621X 的 VDD 内置稳压管,且稳压管可承受的极限电流为 10mA,稳压管的电压值为 5.5V,这样就使得在设计过程中需要注意流入 VDD 引脚的电流值,不能超过 10mA(建议设计值为 5.5mA 以内),同样也不能低于 VDD 的工作电流 1.3mA。

由于 MOS 管在导通时的内阻和 Vgs 电压有关系,而 621X 系列中 MOS 管的驱动电压 Vgs=VDD-0.25,为了保证能使 MOS 在导通过程中,导通内阻小, MOS 管的损耗小,达到提高效率,对于内置 MOS 的 TX6210/TX6212 芯片,整个输入电压范围,VCC 电压应控制在 4V 以上,同时可以改善芯片的温升。

现我们介绍几种可稳定给 VDD 供电的方式:

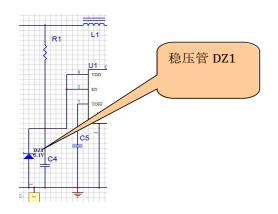
a) 由于内部有稳压管,可直接使用启动电阻作为限流和分压

芯片内部稳压管极限电流为 10mA,建议设计值为 5.5mA 以内,芯片工作电流为 1.3mA,那么启动电阻选择:

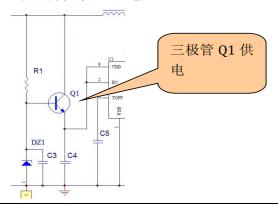
启动电阻范围 R1= (Vi-min-5.5) /1.3mA~ R1= (Vi-max-5.5) /5.5mA

比如 12-24V 输入应用,R1-max= (12-5.5) /1.3=5K, R1-max= (24-5.5) /5.5=3.3K

启动电阻 R1 的功耗 Pd-max= $(24-5.5)^2/3.3$ K=103mW,所以启动电阻选择 1 个 0805 封装,如图上的 R1。


b) 外部应用电压范围非常宽,设置启动电阻值时,选择电阻无法取值合适宽电压应用,比如 48V 输入,启动电阻最大可选择: R1=(48-5.5)/5.5mA=7.7K,如果按最低工作电流 1.3mA 计算,最低输入电压允许: Vi-min=1.3mA*7.7K+5.5V=15.5V,选择 7.7K 的启动电阻,只有

输入电压高于 15. 5V 时,VDD 电压才能保证稳定于 5. 5V,此输入电压于 15. 5V,VDD 电压会掉到 5. 5V 以下,造成驱动 MOS 管的电压 Vgs 降低,MOS 管的损耗增大或者内置 MOS 的芯片温升增大。所以为了兼容宽电压应用,保证 VDD 电压的稳定性可在 VDD 对 VSS 外 部并联一个稳压二极管 DZ1=5. 1V,如下图:由于内部集成为 5. 5V 稳压管,外部稳压管必 须小于 5. 5V,建议外部用 5. 1V 稳压二极管。若外部使用的稳压管电压超过内部 5. 5V 的 稳压管,则在 VDD 电压达到 5. 5V 时,内部的稳压管会先工作,稳定在 5. 5V,导致外部稳压管无法工作,所以接的外部稳压管没有起到真正的用意。


假设输入电压 12-48V,设置 Vi=12V 时最低工作电流

- 2. 0mA@Vdd=5. 5V, R1=(12-5. 5)/2. 0=3. 3K,则 Vi=48V时,电阻上的功耗 Pd=(48-5. 5) ^2/
- 3.3K=547mW, 因此启动电阻设计时需要注意功耗。

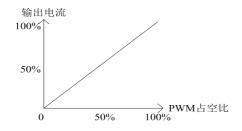
c)由于电阻加稳压管的形式,如上例 12-48V 输入设计时,在最高输入电压点,启动电阻的功耗非常大,对电阻的封装和取值都有要求,并且会增加成本,所以选择如下图的三极管供电方式,有效的解决了宽电压输入提供稳定的 VDD 电压,并且效率会有所提升。

工作原理是: 通过 DZ 稳压管给 NPN 三极管的 b 极 (基极) 一个 5. 6V 电压,而 NPN 三极管的 Vbe 一般在 $0.3^{\circ}0.5v$ 之间,因而在 Q1 (NPN) 的 e 极 (发射极) 获得了一个 Vdd=5.6v-0.5v=5.1v 的 稳压源。由于 CE 极之间需要提供最大 5.5mA 的电流给 Vdd,三极管为工作在放大区,以 β 的放大倍数。 β =100,则需要在 48V 时,要通过 R1 给 b 极提供一个至少 $55\,\mu$ A 的电流。所以,R1 电阻器的值最大不得超过: R1 < (48-5.6) / $55\,\mu$ A=770k Ω ,R1 默认取值 100K,保证 12V 输入时 VDD 亦可得到 5.5V 电压。

型号	放大增益	耐压值
SS8050	>120	25V
MMBTA05	>100	60V
MMBTA06	>100	80V
2SD1782	>120	80V

2) 芯片极限参数说明

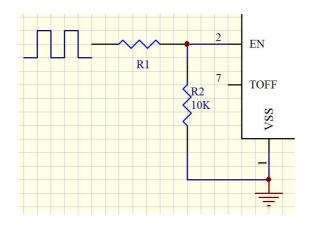
- a) 芯片采用 CMOS 工艺, 5V 为标准 VDD 引脚电压, 极限值为 7V 电压:
- b) VDD 极限电流为 10mA, 建议设计值在 Ivdd=5.5mA 以内;
- c) VDD 内部稳压管电压为 5.5V,外部接稳压管时不可超过内部稳压管电压,VDD 欠压保护电压为 3.2V;
- d) 内置 MOS 管的 TX6210/6212 为 ESOP8 封装, IC 最大散热功耗 Pd=1.3W, TX6212 极限开关电流为 1.2A/建议控制在 1.0A, TX6210 极限开关电流为 1.7A/建议控制在 1.5A; 外置 MOS 的 TX6211 建议开关电流为 6.0A;

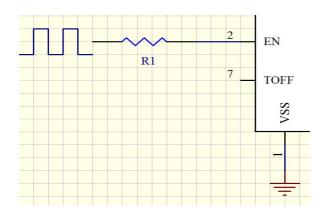

使用内置 MOS 管芯片时,IC 的温升会比外置 MOS 高,为了高可靠性,我司建议的最大输出电流测试芯片温升 55℃最大,当然,若客户使用铝基板,保证芯片的温升在可控范围以内输出电流可设计在极限参数值,若超过芯片极限电流,芯片温度超高,模块在装入灯具腔体之后,由于灯具腔体的温度高,可能会造成芯片进入到过温保护,使得输出电流降低;

e) 芯片极限焊接温度为 240℃ (时间小于 30S)。

3) 如何进行 PWM 调光

在 LED 恒流方案中,经常会有 PWM 的需要,调节 LED 灯的亮度或者颜色而 PWM 调光信号的频率,在使用中需要注意。

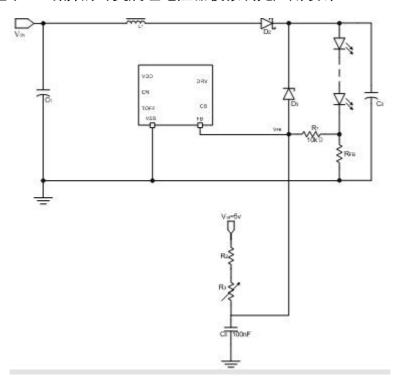

a) PWM 的信号在接传输到 DIM 引脚,由于芯片内部运放、检测和驱动需要建立时间,所以在 MCU 发出 PWM 信号,到 DIM 接收到信号并且芯片做出相应的比例调节时,有一定的延迟时间,而这段延迟时间可能会造成 PWM 调节比例上的差别,PWM 信号的频率越高,延迟时间相对在开关工作周期内占的比重会越大,正常调光信号对应的输出电流比例应为1:1 的比例关系


为保证调光的线性度和调光比,需要满足 Fdrv: Fpwm>100:1,假设芯片 DRV 的工作频率为 100K,PWM 信号频率为 1K,100:1>100:1 满足条件,这样在 PWM 信号为高时,50%占空比,芯片有 50 个完整的开关周期,这样,才能保证输出电流比例和 PWM 占空比信号比例保持基本一致,和上图会基本吻合,默认调光频率设置在 200Hz-1KHz。

b) 通常 PWM 调光的接线电路:

控制器输出的 PWM 信号串入一个电阻 R1,在接到 DIM 引脚,DIM 对 VSS 接一个 10K 下拉电阻。在此需要注意

①、TX621X 的 EN 引脚内部并无上拉或下拉。因此,对于使用 MCU 一类的驱动 IC,由于 MCU 在上电瞬间会有一个持续达数 ms 的上电复位时期,而此时 I/O 口通常处于不确定的悬浮态。由于 TX621X 只需要>0.4*Vdd 即判断为高电平,因而当 I/O 口处于不确定态时,特别需要一个下拉或上拉,来确保 TX621X 在这段时间确定工作在某个状态。否则,在那些 Vin 输入电压特别高的情形下,容易因为数 ms 时间的不确定态,烧毁 LED 灯串。因而,在使用 MCU 调光时,我们不建议客户使用如下电路:



② 、关于 PWM 信号的串联限流电阻器 R1。

一般情况下,该电阻器 R1 是不需要的。特别是很多 MCU 与 TX621X 是接近电压值,甚至是同一个电压供电的情况下(譬如共同由某个 LDO 输出的 5.0v)。但是在某些情况下,这需要增加串联电阻器。 (PWM 调光信号加在 FB 脚效果更好)

当 MCU 采用比 TX621X 更高的供电电压时,这就需要使用 R1 串联限流电阻器。由于 TX621X 的 DIM 引脚是一个高阻抗输入引脚 ,并不会吸入大电流。但是,一般来说,芯片内部引脚对 Vdd 均会有个反向的 ESD 二极管,若芯片 Vdd 除外的其他引脚电压超过 Vdd 达到 0.3V 以上,则内部 ESD 二极管会导通,继而损坏芯片内部电路,造成不可逆的损伤。所以在使用过程中,若 PWM 信号电压高电平电压超过 VDD 时,为保证 TX621X 稳定工作。为此,需要串入一个 1K-4.7k Ω 的 R1 来避免此问题。

4) 基于 FB 引脚的可变旋钮电阻器模拟调光应用设计。

如上图,其调光机理基本上与 PWM 的 DAC 是类似的。我们设定 R2 是一个旋钮电阻器,假定 R1=10k。 Vref=5v,那么,设定一个怎样的 R2 与 R3 电阻器,能够在 R3 全量程时,使得 LED 能够从接近 $0\%^{\circ}90\%$ 的调光目的?(从电路的目的看,即使 R3 如何调整,RFB 还是有电压的,所以理论上无法做到 100%)。

VFB=0. 25V=VR1+VRFB :
$$\overrightarrow{m}$$
 VRFB =ILED*RFB;

$$VR1 = \frac{Vref}{R2 + R3 + R1 + Rfb} \times R1 \approx \frac{Vref}{R2 + R3 + R1} \times R1$$

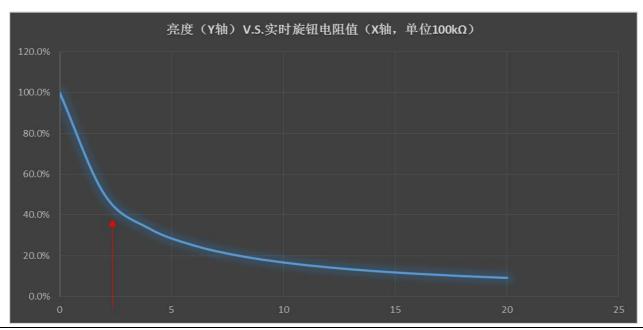
要保证 LED 熄灭,即: 0.25v=
$$\frac{Vref}{R2 + R3(\min) + R1} \times R1$$
;

要保证 LED 能达到 90%亮度,即 0.25*
$$(1-90\%) = \frac{Vref}{R2 + R3(max) + R1} \times R1$$
。

假定, 我们使用 R1=10k, Vref=5v(假定 5V 基准), R3(min)=0Ω。因此, 可以得出 R2 与 R3(max)的关系如下:

A. 0.
$$25v = \frac{Vref}{R2 + R3(min) + R1} \times R1 = \frac{5}{R2 + 10k} \times 10k$$

B.
$$0.25* (1-90\%) = \frac{Vref}{R2 + R3(\max) + R1} \times R1 = > 0.025 = \frac{5}{R2 + R3(\max) + 10k} \times 10k$$


结合 A 和 B, 推出以下:

C. $R2=190k \Omega$

D.
$$0.025 = \frac{5}{R2 + R3(\text{max}) + 10k} \times 10k \implies R2 + R3 = 1990k$$

得出:

R2=190K Ω , R3 (max)=1800k Ω 。其中, R3 (max) 指的就是可变电阻器能够保证具备的值。譬如,计算可知为 1800k Ω ,则可以选择 2000k Ω (即 2M Ω 的可变电阻器),其影响电流的关系如下:

从上图可以看出,使用旋钮电阻器调光时,其输出电流并不是与旋钮电阻器呈现出一个线性的关系的,而是存在一个拐点。因此,你会发现电阻器调光的主要范围在前面 20%的范围,而后面亮度改变的幅度就没有那么大了。因为整个变化过程并不是一个连贯的值。

那实际上电阻器调光的外围元器件参数,一般是由什么决定的,基本上受到以下参数影响:

- A. R1 串联电阻器的值。如我们默认取值的 $10k\Omega$ 。当然, $1k\Omega$ 也是可以的,而且更加精准。
- B. 最高调光的最大量程 Scale (如上面举例的 90%)。
- C. Vref 电压值,当前我们取值 5V。使用不同的参考电压值(譬如 2.5V),肯定会影响了相关的外围参数。

以下,我们将默认值采用符号代替,并定义为已知值,来列算出一个公式出来,即:

A.
$$0.25v = \frac{Vref}{R2 + R1} \times R1$$

B. 0.25* (1-Scale) =
$$\frac{Vref}{R2 + R3(\max) + R1} \times R1$$

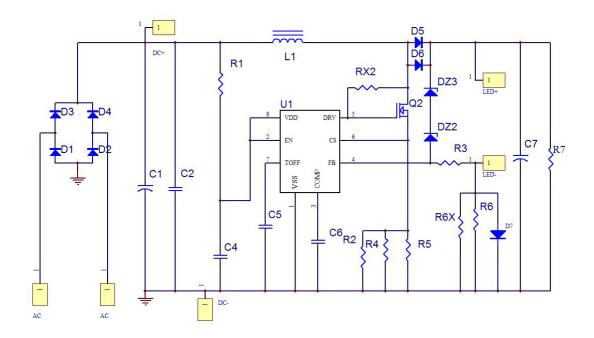
$$\Rightarrow$$
 R2= $\frac{Vref}{0.25} \times R1 - R1$.

$$\Rightarrow$$
 R3(max) = $\frac{Scale}{0.25 \times (1 - Scale)} \times R1 \times Vref$.

其中,已知项为:

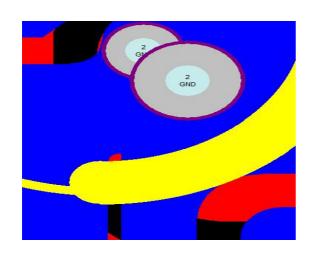
Scale: 量程,小于1,举例如旋钮调光亮度从0%~80%变化,则Scale=0.8。

R1: 反馈串联电阻值, 一般取 $1k\Omega^{\sim}10k\Omega$ 。


Vref:参考取样电压,即旋钮的输入电压。

从上计算可以得知,一旦旋钮调光的熄灭和最高亮度决定,则 R2 和 R3 (max) 就是决定了。在采购中,需要采购一个量程值比 R3 (max) 稍大的可变电阻器即可。譬如 1800k Ω,则选取 2000k Ω(2M Ω)量程的取样电阻器。

相对的 R3 (max) 受 R1 的影响较大。如果 R3 (max) 值过大无法便于生产采购,那么,工程师在设计时请使用 R1=1k,这样会影响 R3 (max) 值也会趋小。不过使用 R1=1k Ω 时,请非常注意是否存在 LED 空载输出。因为 R1=1K Ω 时,当输出空载时, 由于 D3 稳压管的影响,其会增大 D3 稳压管的电流,从而可能大幅度提高了 D3 稳压管的耗散功率。



5) Layout 注意事项:

TX621X 系列在上电后,VDD 达到 5V 电压,DRV 驱动打开 MOS 管,CS 引脚检测 CS 电阻上的电压,电感 电流线性增大,CS 电阻上的电压也线性往上增,在 CS 电压达到 0.25V 的电压时,DRV 关闭 MOS 管,此 MOS 开的回路如图上图②粉红色回路,在 MOS 管关闭后,电感释放电流经过续流二极管 D5/D6,经 过 LED 灯珠,续流回路图上图①红色回路,此两个为的主功率回路。使用 TX621X 系列时主要布线注意事项如下:

- 1. IC 的 VDD 旁路电容 C4 要靠近 IC 的 VDD 和 GND 脚;
- 2. IC 的 VSS, Coff 电容接地, DIM 电容接的地和 VDD 电容的地接一起,均为小信号地。CS 接的地和 FB 电阻的地为功率地,小信号地和功率地分开走线,采用单点走线和连接,在输入电容的负极用星型连接:

- 3. CS 电阻和 FB 采样电阻要靠近 IC 的采样信号脚 CS 和 FB 引脚,要接到输入电容 C1 之后,避免噪声干扰;
- 4. 功率大电流回路(上图红色和粉红色回路)走线要粗,短线,面积小,布线时尽可能不要走闭环,芯片尽可能不在大功率回路以内,避免电流涡流产生的高频磁场对芯片小信号有干扰;
- 5. MOS 管栅极到 IC 的 DRV 脚可接个小电阻,减少 MOS 管的尖峰电压:
- 6. PCB 布线小信号远离电感 L1 和续流二极管 D5, D6;
- 7. 电感器不可直接贴近 IC 或者倒放在 IC 上,避免电感高频电流信号对芯片内部小信号的干扰;
- 8. 使用内置 MOS 芯片电感和续流二极管尽可能靠近芯片 SW 脚:
- 9. 使用内置 MOS 芯片, SW 脚接散热底座, 在布线过程中尽可能多铺铜, 加大芯片散热面积。
 - 6) 《TX621X 电感外围参数计算器》使用步骤和使用说明书,实例演示:

参数计算器分为两个步骤

- 一、橙色部分填入,①输入参数、输出参数和 Coff 电容选择
- 二、蓝色部分系统自动计算出相关的数值范围:
- ②根据橙色输入部分计算出芯片工作频率范围;
- ③根据橙色输入部分计算出临界电感值的大小;
- ④系统自动计算出零界电感值,橙色选择电感量(必须大于零界电感值,输出电流越大,取值越小,反之亦然,一般取值在33-100uH);
- ⑤系统自动计算出 CS 采样电阻总值和电阻的总功耗,以便客户根据电阻的功耗和电阻值来选择是用哪种封装的电阻(0805/0.125W, 1206/0.25W);
 - ⑥系统自动计算出输入电容和输出参数计算出使用电感线径;
 - ⑦根据芯片计算出的芯片驱动频率范围,推荐使用的 PWM 调光频率范围
 - ⑧系统自动计算出启动电阻值范围:
 - ⑨系统自动计算出方案选的芯片型号,以便客户选型,使得客户不用去牢记选型表;
 - 三、使用参数计算器实例演示:

以我司提供的 TX6210 的 DEMO, 演示如何使用《TX621X 电感外围参数计算器》

输入电压最小值(V)	输入电压最大值(V)	输出电压值(V)	输出电流值(A)
12	24	36	0.6

①填入输入电压和输入电流、填入输出电压和输出电流参数

输入最低电压	Vin_min(V)=	12
输入最高电压	Vin_max(V)=	24
输出电压	$V_{O}(V) =$	36
输出电流	Io(A)=	0.6

②填入 Coff 电容值,由于 Coff 电容值决定的 MOS 管的关断时间,和芯片的工作频率有直接关系,所以在填入此 Coff 电容值时,可观察工作频率的范围,最小值尽可能大于 40KHz (避免进入音频范围,造成电感饱和也有可能),最大值不超过 300KHz (避免 DRV 频率过高,造成 MOS 的损耗增加)

Coff 电容	Coff(pF)=	33		填入 Coff, 并
电源转换效率	η (%)=	90		观察 Fs 范围
驱动频率范围	Fs(KHz) =	110	221	

③系统自动计算出电感最小值,根据最小值选择电感值,必须大于最小值,否则恒流效果下降;

计算电感最小值	L (uH) >	30	根据电感最小值,
实际电感取值	L (uH) =	47	选择合适电感值

④根据输出电流计算出 FB 采样电阻值和电阻功耗,根据计算值选择电阻封装;

FB 采样电阻	$R_{FB}(\Omega) =$	0. 42
FB 电阻功耗	$P_{FB}(W) =$	0. 15

⑤系统根据电感取值和 FB 电阻取值, 计算出 CS 最小值和电阻功耗;

CS 采样电阻	$\operatorname{Rcs}(\Omega) <$	0.09
实际选择 CS 电阻阻	l值 Rcs(Ω)=	0.075
CS 电阻功耗	Pcs(W)=	0. 56

⑥系统自动计算出电感线径和可支持的 PWM 调光频率最高值

由咸线径	ф (mm)=	0.55
	4 (mm)	0.00

DIM 脚 PWM 调光频率 F _{DIM(pF)} ≤	10				
⑦系统自动计算出启动电阻 Rin 的范围					
启动电阻范围Rin(KΩ)=	2. 3	3. 3			
<u> </u>	立的型号				
方案自动选择 IC 型号	TX6210/TX6211				

四、使用说明书的"方案参数提示"和参数预判(若有提示,提示显示于参数计算器的右上方)方案参数提示为系统自动提示内容,排除客户使用此芯片时可能出现的现象,同时出现如下参数提示对应的措施为:

提示①,芯片工作频率不在建议值范围(100³00KHz),可增大Coff的取值,降低芯片工作最大频率;

提示②,由于输入 CS 电阻为限制输入电流用,计算器中系统会根据方案参数自动计算出 CS 电阻需要的最小值,在实际应用中 CS 电阻值设计值需要 < 系统计算出的 CS 电阻值,否则可能由于 CS 限制电流,等同于限制了输入功率,比如 12-24V 输入,输出 36V/0. 6A, Po=21. 6W,假设效率 $\eta=0$. 9,输入功率 Pi=24W,在 24V 输入时,Ii=1A,在 12V 输入时,Ii=2A。

若 CS 电阻取值限制输入电流为 1.5A, 12V 输入时,限制输入功率 Pi-limit=12*1.5=18W, 无法 达到正常需要 24W 功率,由于输入功率限定,故而输出功率同样被限制,输出电压基本固定的情况下,输出电流所以达不到设定的电流值,这就是可能出现的输入电压下降到最低电压值时,输出电流下降的原因。

驱动频率过高,建议设置在 300K 以内

提示①

低输入电压时,输出电流下降,需减小 CS 电阻

提示②

7) TX621X 基本调试步骤

- 1 根据《TX621X 电感外围参数计算器 V2.0》初步计算外围参数:如 Coff 值、电感量和电感 线径、FB 和 CS 电阻值和功耗、启动电阻等:
- 2 根据输出电流值选择 MOS 管 (外扩 MOS 的 TX6211) 和续流二极管的参数,MOS 管选择峰值电流 (Ipk=0.25/Rcs, 其中 Rcs 已在第一步计算器中计算出) 的 4~5 倍的余量,续流二极管选择输出电流的 2~3 倍的余量,确保外围器件的温升在合理范围以内:
- 3. 输出电容容量选择初步应为 3²5uF/W; AC 输入时输入电容的容量选择初步应为 30²50uF/W; 输出电容的耐压必须超过空载保护稳压二极管电压的 1.2 倍;
- 4. 根据参数焊接好模块,首先空载测试 Vdd 电压是否达到 5.5V,且输出空载电压和和输出空载保护的稳压二极管基本一致(输出空载保护稳压二极管没接的情况下切不可空载,否则会对 MOS、

续流二极管、IC 等均有损坏);

5. 空载正常后,再带载(切不可先输入上电,再接输出灯载,由于先上电空载电压非常高,接负载时会烧坏灯珠,可设计空载电压为1.3*V_{LED-MAX}),带载时测试最高输入电压时的工作频率控制在300KHz以内,且VDD的电压在输入电压范围段内均要满足大于5V的电压(若VDD电压小干5V,减小启动电阻,或者改用前章写的其他方式供电)

8) TX621X 应用中常见问题分析:

1.Q:模块效率低,续流二极管和 MOS 管(内置为 IC)发热严重。

A:首先查看 MOS 管和续流二极管的电压和电流是否达到调试步骤中的余量要求,再排查 VDD 电压是否大于 5V,保证足够的驱动电压,提高效率,再排查芯片驱动频率是否过高,保证在 300KHz 以内,建议值为 100-220KHz 区间范围段;

2.Q:PWM 调光过程中有啸叫声。

A:人耳的音频范围段为 4KHz~20KHz,最敏感的音频段为7KHz,在调光过程中,由于芯片骤 然关闭电感的充放电回路,而电感的电流不能突变,所以会在电感内形成一定的泄放电和磁芯之间 的通路,造成有噪声出现,若需要减弱此声音,使其变得不容易被人耳所能感知,需要避开人耳的 音频范围段,由于20K 以上的调光频率调光线性度和调光比不理想,所以建议调光频率设置在1KHz 以内,越往下效果越好,500Hz 的调光频率比1KHz 理想,200Hz 比 500Hz 更理想,低于200Hz 的调光可能进入人眼的频闪范围以内,不建议低于200Hz 调光频率;

3.Q: 驱动 MOS 的 DRV (内置为 SW 脚)信号不规则,不是规则的稳定方波信号。

A:a) 首先排查 MOS 管的开启电压 Vgs(th)是否小于 2.5V(内置的芯片不用排查此点),若 MOS 管的开启电压大于 2.5V,可能造成开启困难或者开启不完全导通现象。b)排查 DIM 信号是否有接上拉动作,由于芯片内部无上拉或者下拉动作,所以在实际应用中,不调光的时必须接上拉信号 到 VDD。c)排查布线是否合理,请参考上述的布线规则。

4.Q:设计中R_{FB}和R_{CS}的取值关系和取值不当造成的影响。

A:FB 和 CS 引脚基准电压均为 0.25V,且只要 V_{FB} 或者 V_{CS} 其中一个超过 0.25V,芯片就关断 MOS 管,两者是"或"门关系,CS 引脚为接入在 MOS 管 S 极对地,控制电感充电回路中,MOS 管上 的峰值电流大小,FB 引脚为接入在 LED 回路中,控制 MOS 管开通和关闭时,LED 上的均值电流大小。

- a) 若 CS 电阻取值太大,在 MOS 管开通时的充电回路②中电感的充能就会小,充能不足的情况下,在 MOS 管关闭时间内,电感给后级 LED 灯珠供电的能量即不够,根据能量守恒 Pi* η =Po,则输出的功率即不足,在芯片正常工作时间 段内,VCS 电压比 V_{FB} 的电压会先达到 0. 25V,VCS 电压达到 0. 25V 后 MOS 管就 会关闭,造成 V_{FB} 电压始终无法达到 0. 25V,所以根据 $Io=V_{FB}/R_{FB}$,由于 $V_{FB}<0$. 25V,所以此时 Io<0. 25/ R_{FB} ,若出现此种输入电压在一定范围内变化,低输入电压时无法达到设定输出电流时,需要减小 R_{CS} 电阻值。
- b) 若 CS电阻取值太小,从 MOS 管的开通充电回路②中可知,MOS 管上的峰值电 流同样会太大,比如 R_{cs} =0.01R,则 MOS 管 I_{DS} 峰值电流=0.25/0.01=25A,对 MOS 管的电流冲击和电感过电流的要求均会提高,设计不合理的情况下可能造成 电感饱和、MOS 管的温升超过合理范围。建议设计 R_{cs} \leq 0.025R, I_{DS} =0.25/0.025=10A,过大的峰值电流,需要的 MOS 管电流同样会增加,成本增加很多。
 - 5.Q:设计中FB 电阻上并联的 M7 和假负载 R7 有何用,为什么要加上。

A: B00ST 线路中,输出电容容量较大,在输入电源断开后,输出电容储能时间很长,为了避免生产过程中此电容的高压触碰到 PCB 其他低电压引脚,需要对输出电容放电,所以加上放电电阻 R7,可理论上,RFB上的电压都不会超过 0.25V,但是,为了更可靠的抑制浪涌电流(比如输出电容短路造成浪涌电流),避免 RFB 电阻的损坏,我们建议在芯片的 RFB 上并接一个大约 0.7V 的二极管(如 M7, 1N4147),如原理图上的的 D7 整流二极管,其限定了 RFB 的电压不可能超过 0.7v,从而保护了的 FB 电阻损坏。