
基于 TX422X 升压恒压应用指导书

方案特点

- 宽输入电压:5V-100V
- FB 基准电压 1.0V
- 高效率: 95%
- 固定工作频率,频率可调

- 外围元件少,整体成本低
- EN 关断功能
- 完善的多重保护,过流/过温保护, 可靠性高
- 内置软启动

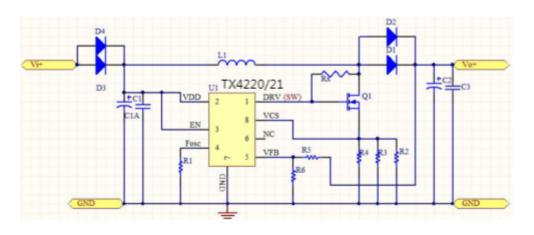
管脚排列

管脚描述

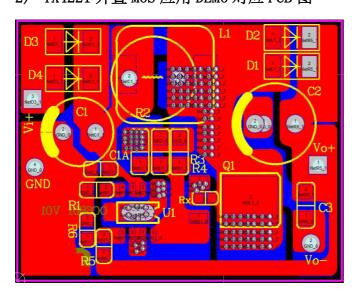
-+11				引脚	定义			
型号	驱动端 DRV(SW)	芯片电 源 VDD	芯片使 能 EN	频率设 定 ROSC	输出反 馈电压 VFB	悬空不 接 NC	接地 GND	限流检 测 VCS
TX4221	1	2	3	4	5	6	7	8
TX4220	1	2	3	4	5	6	7	8

注:内置 MOS 芯片底部散热焊盘接 SW 脚

目录	2
1. TX	(422x 系列快速选型表······3
2. TX	K4221 外扩 MOS 应用·······3
1)	DEMO 原理图和 PCB 图 ·······4
2)	TX4221 外扩 MOS 应用 DEMO BOM 清单······4
3)	TX4221 外扩 MOS 典型应用测试数据4
3. TX	K4220 内置 MOS 应用······5
1)	DEMO 原理图和 PCB 图 ······5
2)	TX4220 内置 MOS 应用 DEMO BOM 清单······6
3)	TX4220 内置 MOS 典型应用测试数据 ······6
4. TX	(422X 系列设计指南······7
1)	芯片 VDD 参数,如何给 VDD 供电 ······7
2)	芯片的极限参数说明 ······8
3)	如何实现可调输出电压 ······9
4)	如何实现升降压恒压输出 · · · · · · · · · · · · · · · · · · ·
5)	芯片 Layout 注意事项······11
6)	《TX422x 电感外围参数计算器》使用步骤和说明书······12
7)	芯片调试基本步骤14
8)	应用中常见问题解答15



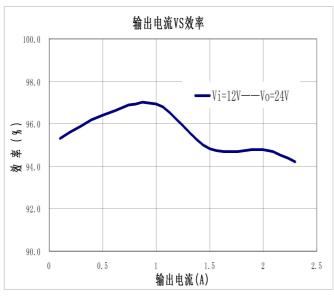
1. TX422x 系列快速选型表

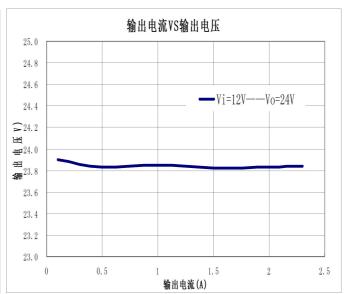

型号	输入电压	输入电流	输出功率	驱动方式	效率	关断方式	封装
TX4221	5-100	≤6A	≤100W	外扩 MOS	≪95%	EN	S0P-8
TX4220	5-100	≤2. 5A	≤20W	内置 MOS	≪95%	EN	ESOP-8

2. TX4221 外扩 MOS 应用

1) TX4221 外扩 MOS 应用 DEMO 原理图

2) TX4221 外置 MOS 应用 DEMO 对应 PCB 图

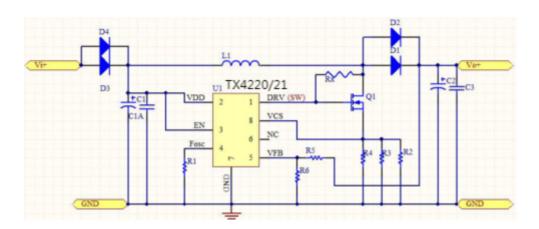


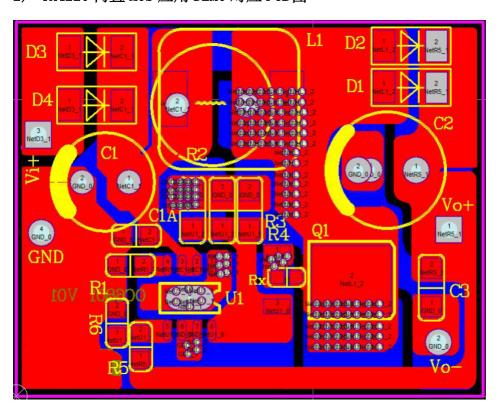


3) TX4221 外置 MOS 应用 DEMO BOM 清单

型長	를:TX4221		规格: Vin=(10-22)V;Vo=24V;Io=2.0A	设计	:
NO.	Part Types	Symbol	Description	Qty.	Unit
1	贴片电阻	R1	300K±5% 0805 0.125W	1	Pcs
2	贴片电阻	R2 R3 R4	0.1R±1% 1206 0.25W	3	Pcs
3	贴片电阻	R5	56K±1% 0805 0.125W	1	Pcs
4	贴片电阻	R6	2.43K±1% 0805 0.125W	1	Pcs
5	贴片电阻	Rx	不焊接,使用内置的 TX4220 才需焊接	0	Pcs
6	贴片电容	C1A	1uF±10%/50V/X7R/0805	1	Pcs
7	贴片电容	C3	1uF±10%/50V/X7R/1206	1	Pcs
8	电解电容	C1	220uF/35V(φ10*13)	1	Pcs
9	电解电容	C2	220uF/35V(φ10*13)	1	Pcs
10	贴片二极管	D1 D2	SS56/5A/60V/SMB	2	Pcs
11	贴片二极管	D3	0R±5%/1812/0.35W/0R 电阻代替	1	Pcs
12	电感	L1	L=47uH/φ=1.0mm/ T65125 铁硅铝磁环	1	Pcs
13	IC	U1	TX4221/SOP-8	1	Pcs
14	MOS	Q1	XDS50N06/TO252/60V/50A/23mR	1	Pcs

4) TX4221 外置 MOS 应用 DEMO 测试数据

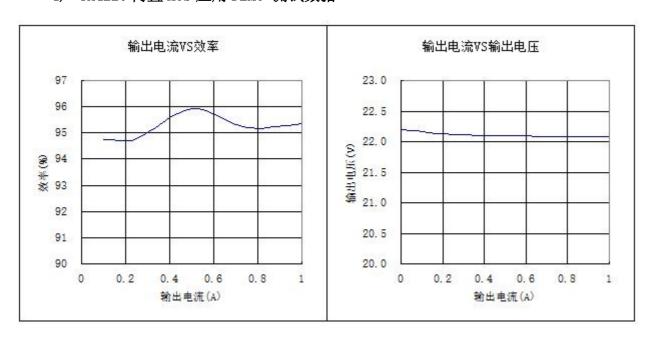




3. TX4220 内置 MOS 应用

1) TX4220 内置 MOS 应用 DEMO 原理图

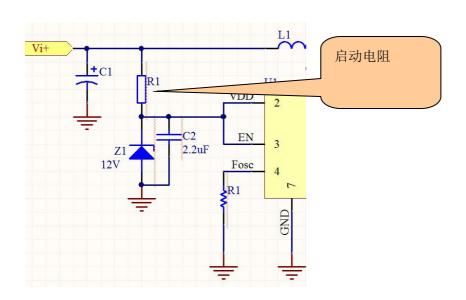
2) TX4220 内置 MOS 应用 DEMO 对应 PCB图



3) TX4220 内置 MOS 应用 DEMO BOM 清单

型長	∄:TX4220		规格: Vin=(10-20)V;Vo=22V;Io=1.0A	设计	:
NO.	Part Types	Symbol	Description	Qty.	Unit
1	贴片电阻	R1	300K±5% 0805 0.125W	1	Pcs
2	贴片电阻	R2 R3	0.1R±1% 1206 0.25W	2	Pcs
3	贴片电阻	R5	51K±1% 0805 0.125W	1	Pcs
4	贴片电阻	R6	2.43K±1% 0805 0.125W	1	Pcs
5	贴片电阻	Rx	0R±5%/0603/0.1W	1	Pcs
6	贴片电容	C1A	1uF±10%/50V/X7R/0805	1	Pcs
7	贴片电容	C3	1uF±10%/50V/X7R/1206	1	Pcs
8	电解电容	C1	150uF/35V(φ10*13)	1	Pcs
9	电解电容	C2	150uF/35V(φ10*13)	1	Pcs
10	贴片二极管	D1	SS56/5A/60V/SMB	1	Pcs
11	贴片二极管	D3	0R±5%/1812/0.35W/0R 电阻代替	1	Pcs
12	电感	L1	L=47uH/φ=0.75mm/T50125mm 铁硅铝电感	1	Pcs
13	IC	U1	TX4220/ESOP-8	1	Pcs

4) TX4220 内置 MOS 应用 DEMO 测试数据

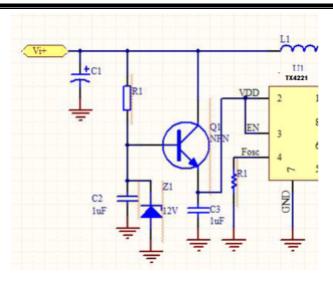


4. TX422x 系列设计指南

1) 芯片 VDD 参数选择

- A、芯片 VDD 供电耐压 40V, 若输入电压低于 40V 可直接输入, 不需要增加外围元器件。
- B、若输入电压超过 40V 使用,可使用如下几种电路进行供电:
- a) 可直接使用启动电阻作为限流和分压

稳压管值选择 12V 耐压的,稳压管电流一般为 10mA,芯片工作电流为 2.5mA,那么启动电阻选择:


启动电阻范围 R1= (Vi-min-12) /2.5mA~R1= (Vi-max-12) /10mA

比如 48-60V 输入应用, R1-max= (48-12) /1.3=14.4K, R1-min= (60-12) /10=4.8K

启动电阻 R1 的功耗 Pd-max= $(60-12)^2/4$. 8K=480mW,Pd-min= $(48-12)^2/14$. 4K=90mW,所以启动电阻值选择比较重要,会影响到电阻的功耗和封装选择。

b)由于电阻加稳压管的形式,如上例 12-60V 输入设计时,在最高输入电压点,启动电阻的功耗非常大,对电阻的封装和取值都有要求,效率也会下降,所以选择如下图的三极管供电方式,有效的解决了宽电压输入提供稳定的 VDD 电压,并且效率会有所提升。

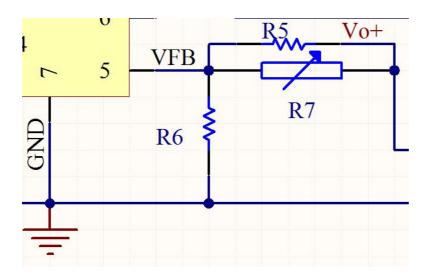
工作原理是: 通过 DZ 稳压管给 NPN 三极管的 b 极 (基极) 一个 12V 电压,而 NPN 三极管的 Vbe 一般在 $0.3^{\circ}0.5v$ 之间,因而在 Q1 (NPN) 的 e 极 (发射极) 获得了一个 Vdd=12V-0.5V=11.5V 的 稳压源。由于 CE 极之间需要提供最大 2.5mA 的电流给 VDD,三极管为工作在放大区,以 β 的放大倍数。 β =100,则需要在 60V 时,要通过 R1 给 b 极提供一个至少 25μ 的电流。所以,R1 电阻器的值最大不得超过: R1 < (60-12) /25 μ A=1920K Ω ,保证 12V 输入时 VDD 亦可得到 10V 以上的电压,保证驱动电压也是 10V,R1 > (12-10) /25 μ A=80K Ω ,R1 默认取值 100K。

以下是常规的 SOT23 封装的 NPN 三极管的选型表:

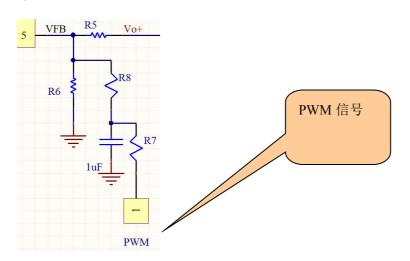
型号	放大增益	耐压值
MMBTA05	>100	60V
MMBTA06	>100	80V
2SD1782	>120	80V

2) 芯片极限参数说明

- a) 芯片采用 CMOS 工艺, 40V 为标准 VDD 引脚电压, 极限值为 45V 电压;
- b) 芯片最大工作频率 Fs=450KHz:
- c) 内置 MOS 管的 TX4220 为 ESOP8 封装, IC 最大散热功耗 Pd=0.8W, 极限 MOS 开关电流为 2.5A/建议最大开关电流为 2.0A。


使用內置 MOS 管芯片时,IC 的温升会比外置 MOS 高,为了高可靠性,我司建议的最大输出电流测试芯片温升 55℃最大,当然,若客户使用铝基板,保证芯片的温升在可控范围以内输出电流可设计在极限参数值,若超过芯片极限电流,芯片温度超高,模块在装入模具腔体之后,由于腔体的温度高,可能会造成芯片进入到过温保护,使得输出电压关闭;

d) 芯片极限焊接温度为240℃(时间小于30S)。

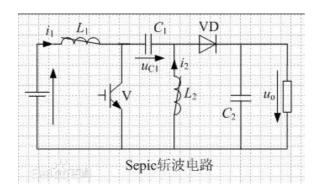

3) 如何实现输出电压可调

① 在采样电阻上拉的电阻上并联一个可调电阻,在可调电阻 R7 减小时,输出电压也会随之减小,反之会增大。如下图所示接法:

$$Vout = 1 + \frac{R5*R7}{R6*(R5+R7)}$$

② 通过在 FB 脚接 PWM 信号调整输出电压,如下电路所示:

加入 PWM 信号,PWM 信号的频率在 500Hz-10KHz,R7=1K±1%, R6=2.43K±1%,输出电压 $Vout = (1 - \frac{R6*Vpwm*Duty}{R6+R7+R8})*(1 + \frac{R5}{R6})$

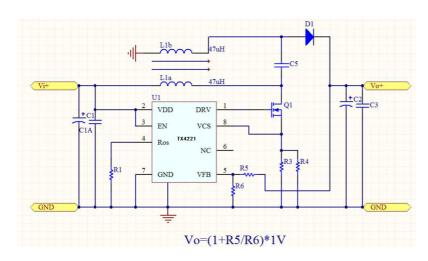

若 PWM 信号为 5.0V,则 R8 选择 5.6K±1%

若 PWM 信号为 3.3V,则 R8 选择 1.3K±1%

4) 如何实现升降压恒压输出:

由于芯片是升压芯片,可以改变电路架构实现升降压的功能,如下 Sepic 电路即可实现随意升降压,同时输出电压和输入电压的极性相同。

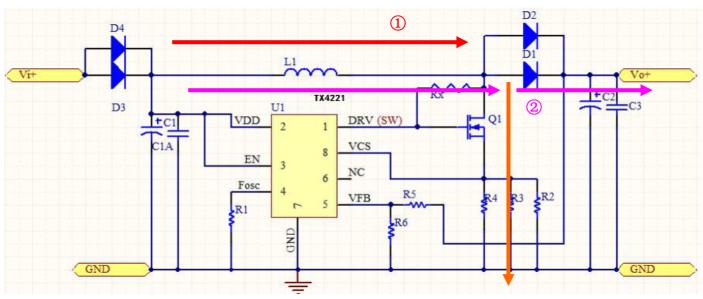
Sepic 电路的工作原理:


当 V 处于导通时, Vin-L1-V 回路和 C1-V-L2 回路同时导电, L1 和 L2 贮能。

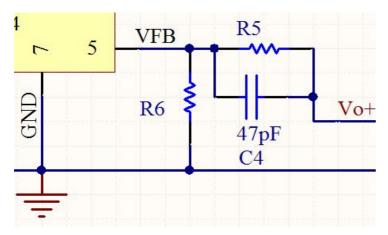
V 处于关断时,Vin—L1—C1—VD—负载(C2 和 R)回路及 L2—VD—负载回路同时导电,此阶段 E 和 L1 既向负载供电,同时也向 C1 充电,C1 贮存的能量在 V 处于通态时向 L2 转移。

Sepic 电路的基本计算:

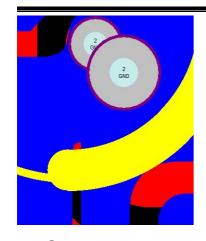
D=Vout/ (Vin+Vout)


可推衍到我司 TX4221 上电路可实现,如下图所示电路接法

由于采用耦合电感 L1a/L1b,则感量
$$L = \frac{Vin \max^2 * D \min^2}{2*Fs*Pout \min^* \left(1 + D \min^* \frac{1 - \eta}{\eta}\right)}$$



5) Layout 注意事项:


TX422x 系列在上电后,VDD 达到 5V 电压(VDD 工作电压最小值),DRV 驱动打开 MOS 管,CS 引脚检测CS 电阻上的电压,电感电流线性增大,CS 电阻上的电压也线性往上增,在CS 电压达到 0.25V 的电压时,DRV 关闭 MOS 管,此 MOS 开的回路如图上图①红色回路,在 MOS 管关闭后,电感释放电流经过续流二极管 D1/D2,经过 LED 灯珠,续流回路图上图②粉红色回路,此两个为的主功率回路。使用 TX422x 系列时主要布线注意事项如下:

- ① IC 的 VDD 旁路电容 C1 C1A 要靠近 IC 的 VDD 和 GND 脚;
- ② VFB 电阻需靠近芯片的 5 脚,走线太远,走线的寄生电容和电感可能可能对输出电压采样有影响,为了避免干扰信号的引入,可在 VFB 的上拉电阻上并联 47pF 电容。

③ IC的GND, VFB下拉电阻地, Fosc 电阻的地和 VDD 电容的地接一起,均为小信号地。CS接的地和输出电容地为功率地,小信号地和功率地分开走线,采用单点走线和连接,在输入电容的负极用星型连接;

- ④ CS 电阻要靠近 IC 的采样信号脚,要接到输入电容 C1 之后,避免噪声干扰;
- ⑤ 功率大电流回路(上图红色和粉红色回路)走线要粗,短线,面积小,布线时尽可能不要走闭环,芯片尽可能不在大功率回路以内,避免电流涡流产生的高频磁场对芯片小信号有干扰;
 - ⑥ MOS 管栅极到 IC 的 DRV 脚可接个小电阻,减少 MOS 管的尖峰电压;
 - (7) PCB 布线小信号远离电感 L1 和续流二极管 D1, D2:
 - (8) 电感器不可直接贴近 IC 或者倒放在 IC 上,避免电感高频电流信号对芯片内部小信号的干扰;
- ⑨ 使用内置 MOS 芯片, 电感和续流二极管尽可能靠近芯片 SW 脚, 芯片底部散热焊盘接 SW 脚, 在布线过程中尽可能多铺铜,加大芯片散热面积,但是铺铜不可靠近小信号,避免干扰小信号。
- ⑩ MOS、续流二极管、电感、内置 MOS 的芯片,此四个元器件都是功率发热器件,布局尽可能均匀分布,避免集中发热严重,造成元器件温升太高。
 - 6) 《TX422X 参数计算器 V1.0》使用步骤和使用说明书,实例演示:

参数计算器分为两个步骤

- 一、橙色部分填入,①输入参数、输出参数和 Rosc 电阻和效率选择
- 二、蓝色部分系统自动计算出相关的数值范围:
- ②根据橙色输入部分计算出芯片工作频率;
- ③根据橙色输入部分计算出临界电感值的大小;
- ④系统自动计算出零界电感值,橙色选择电感量(必须大于零界电感值,输出电流越大,取值越小,反之亦然,普通取值在47-100uH),并且根据客户选择电感量,自动计算出电感电流纹波的大小;
 - ⑤系统根据输出参数,和客户选择 VFB 下拉电阻的参数,自动计算出分压上拉电阻电参数;
- ⑥自动计算出启动电阻值范围系统自动计算出 CS 采样电阻总值和电阻的总功耗,以便客户根据电阻的功耗和电阻值来选择是用哪种封装的电阻(0805/0,125W,1206/0,25W):

- ⑥系统自动计算出计算出使用电感线径;
- ⑦系统自动计算出计算出使用输出电容容量;
- ⑧系统自动计算出计算出使用输入电容容量;
- ⑨系统自动计算出方案选的芯片型号,以便客户选型,使得客户不用去牢记选型表。
- 三、使用参数计算器实例演示:

以我司提供的 TX4221 的 DEMO, 演示如何使用《TX422x 参数计算器 V1.0》

输入电压最小值(V)	输入电压最大值(V)	输出电压值(V)	输出电流值(A)
10	22	24	2. 0

①填入输入电压和输入电流、填入输出电压、输出电流和效率参数

输入最低电压	Vin_min(V)=	10
输入最高电压	$Vin_{\max}(V) =$	22
输出 CV 电压	$V_{O}(V) =$	24
输出最大电流	Io(A)=	1
电源转换效率	η (%)=	90

②填入 Rosc 电阻值,由于 Rosc 电阻值值决定的 MOS 管的开关频率,,所以在填入此 Coff 电容值时,可观察工作频率的范围,最小值尽可能大于 40KHz (避免进入音频范围,造成电感饱和也有可能),最大值不超过 320KHz (避免 DRV 频率过高,造成 MOS 的损耗增加),同时 Rosc 悬空时,频率为最高值500KHz

Rosc 电阻 Rosc (K)=	300	 填入 Rosc, 并
电源转换效率 η (%)=	90	观察 Fs 范围
驱动频率范围 Fs(KHz)=	118	

③系统自动计算出电感最小值,根据最小值选择电感值,必须大于最小值,否则输出纹波电流大。

计算电感最小值 L(uH) >	13	根据电感最小值, 选择合适电感值

④系统自动计算出零界电感值,橙色选择电感量(必须大于零界电感值,输出电流越大,取值越小,反之亦然,普通取值在47-100uH),并且根据客户选择电感量,自动计算出电感电流纹波的大小;

实际电感取值 L(uH)=	47	普通使用 47uH [~] 100uH
电感纹波电流范围 ΔI(A)=	1.06	1. 98

⑤系统根据输出参数,和客户选择 VFB 下拉电阻的参数,自动计算出分压上拉电阻电参数;

FB 分压下拉电阻(K)	2. 43
FB 分压上拉电阻(K)	55. 89

⑥系统自动计算出计算出使用电感线径;

电感线径	Φ (mm) $>$	1. 13
------	-----------------	-------

⑦系统自动计算出计算出使用输出电容容量;

输出电容 Cout (uF)	267
----------------	-----

⑧系统自动计算出计算出使用输入电容容量:

输入电容 Cin (uF)	139
---------------	-----

⑨系统自动计算出方案选的芯片型号,以便客户选型,使得客户不用去牢记选型表。

方案自动选型 TX4221

四、使用说明书的"方案参数提示"和参数预判(若有提示,提示显示于参数计算器的右上方) 方案参数提示为系统自动提示内容,排除客户使用此芯片时可能出现的现象,同时出现如下参数提示 对应的措施为:

提示①,输入电压太低,芯片无法启动,芯片工作电压是 4.8V 启动,在低于 4.8V 芯片无法工作;

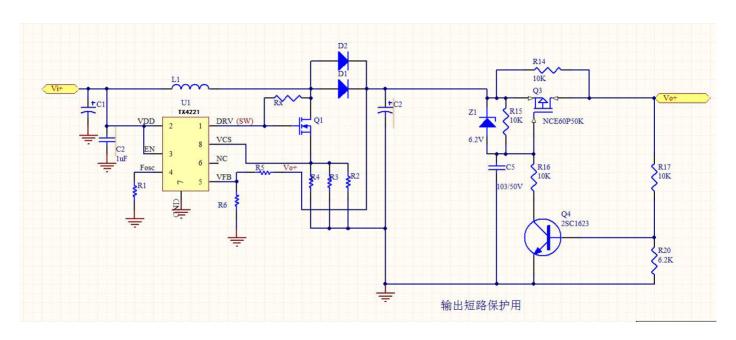
提示②,系统自动计算出的启动电阻值,宽电压输入时尽可能选择最大启动电阻值,避免高输入电压时流入芯片 Vdd 引脚的电流过大,超过芯片 Ivdd 的建议值;

提示③,方案最低输入电压和输出电压比较接近或者小于输出电压,导致模块不满足降压条件,造成输出电压。

输入电压太低,芯片无法启动	
低输入电压时,输出电压下降,需减小 CS 电阻	提示②
输入大于输出,芯片无法正常升压	提示③

7) TX422X 基本调试步骤

- ① 根据《TX422X 电感外围参数计算器 V1.0》初步计算外围参数: 电感量和电感线径、CS 电阻值和功耗、输入和输出电容容量;
- ② 根据输入电流值选择 MOS 管和续流二极管的参数,MOS 管选择峰值电流 (Ipk=0. 25/Rcs, 其中 Rcs 已在第一步计算器中计算出)的 3~4 倍的余量,续流二极管选择输出电流的 2~3 倍的余量,


确保外围器件的温升在合理范围以内,MOS 管不可使用耐压超过 200V,MOS 管的导通内阻和结电容要权衡选择,建议 MOS 管的 Ciss 参数不要大于 3000pF 的低压 MOS; 续流二极管 D1/D2 必须使用肖特基二极管;

- ③ 输入电容的容量可以降低,输出电容容量小的话会造成输出功率和输出带载有影响,输出电容的容量要达到理论计算值:
 - ④ 根据参数焊接好模块,首先测试空载电压是否和设定值基本一致;
- ⑤ 空载正常后,再带载,带载时测试最高输入电压时的工作频率控制在 300KHz 以内,且测试 MOS 的 DRV 信号是否稳定规则的方波;
 - ⑥ 如果调试过程中有问题,请参考下面的常见问题分析。
 - 8) TX422X 应用中常见问题分析:
 - ① Q:模块效率低, 电感、续流二极管和 MOS 管发热严重。
- A:1) 查看 MOS 管和续流二极管的电压和电流是否达到调试步骤中的余量要求,避免造成元器件发热严重损失效率多, MOS 管选择低导通内阻 Rds (on) 值和低开启电压,续流二极管选择肖特基,电感选择需注意过电流和磁芯的损耗,一般铁硅铝的磁环电感会比黄色环形电感或者贴片电感损耗小,发热小。
 - 2) 芯片驱动频率是否过高,保证在320KHz以内,建议值为65-250KHz区间范围段;
- 3) PCB 走线,保证大功率走线要粗并且短,避免寄生参数对性能的影响,输入电容要靠近芯片的 VDD 和 GND
- 4)测试用的电表和仪器的误差,需要用万用表测试电源板上的输入电压、输入电流、输出电压、输出电流,而非直接度数输入电源或者输出负载上显示的数值。
 - ② Q: 驱动 MOS 的 DRV (内置为 SW 脚)信号不规则,不是规则的稳定方波信号。
- A:a) 首先排查 MOS 管的开启电压 Vgs (th) 是否小于 3.5V (内置的芯片不用排查此点),若 MOS 管的开启电压大于 3.5V,可能造成开启困难或者开启不完全导通现象。b) 排查 EN 信号是否有接上拉动作,由于芯片内部无上拉或者下拉动作,所以在实际应用中,不使用使能脚时必须接上拉信号到 VDD。c) 排查布线是否合理,请参考上述的布线规则。d) 外围参数选择不合理,比如电感量偏小,一般不要使用低于 22uH 感量;输入电容和输出电容的容量偏小,特别是输出电容的容量偏小严重,增大输入和输出电容的容量;输入和输出电容没有加 1uF 高频去耦电容,或者去耦电容离 VDD 引脚太远。
 - ③ Q:输入电压变化过程中线性调整率精度不高,如何调整。
 - A:a) 排查 VDD 电压是否在输入电压范围段均达到 5V 以上。b) 排查芯片的工作频率在输入

电压范围段是否有超过 300KHz,并且驱动波形是规则的方波信号。c) Vdd 流入的电流控制在 5.5mA 以内,若超过 5.5mA 线性调整率精度会变差,可在 Vdd 并联稳压 5.1V 二极管来达到超过 5.5mA 的应用,并提高线性调整率。d) 在电感不会饱和(示波器测试 CS 引脚电压,若 CS 电压线性上升段为逐渐上升,没有出现弯曲或者陡峭上升,表明电感没有饱和)且温升合理的范围内,提高电感量,降低 LED 上的纹波电流,从而提高线性调整率

- ④ Q:上电出现大电流,或者输入限流状态,而输出没有升压。
 - A:1) 底部焊盘 SW 接到地了,应该是接芯片的 SW 脚,或者悬空焊盘也可以。
 - 2) MOS 管的开启电压太高,由于芯片开启 MOS 是在 5V 开启,所以 MOS 管的 VTH 值不能选择太高,VTH 最大值建议值在 3V 以内的。
 - 3)输出短路,由于芯片没有输出短路保护,输出若短路会出现 MOS 直通,直接损坏 MOS、芯片和续流二极管。若客户需要短路保护,需要在外部增加短路保护电路,如下图为短路保护电路:

(5) Q:输出负载变化时,输出电压精度不高,如何调整。

A:由于芯片为峰值电流检测,无法直接检测 LED 的均值电流,输出电流=峰值电流-纹波电流/2,峰值电流为固定值,当负载变化时,纹波电流会变化,输出电压增大,纹波电流变大,输出灯载电流会下降,要降低负载变化对输出电流的影响,可进行以下操作:a)提高 IC 的工作频率,但同样要保证芯片的最高频率控制在 300KHz 以内为佳。b)增大电感量,降低纹波电流,需保证电感的温升并且不会出现饱和现象。