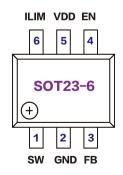


24W 输出升压型DC-DC转换器

概述

TX4208 是一款高频、高效 DC-DC 转换器,它集成了 4A,0.1Ω 开关 MOSFET,可提供高达 14V 的输出电压。固定的 1.2MHz 频率,允许使用小型外 部电感和电容,并提供快速瞬态响应。 它集成了软启动和频率补偿,外部只需要很少的元件。可以通过一个电阻或一个模拟电压来调整 SW 端输出的电流。芯片采用 SOT23-6 封装。

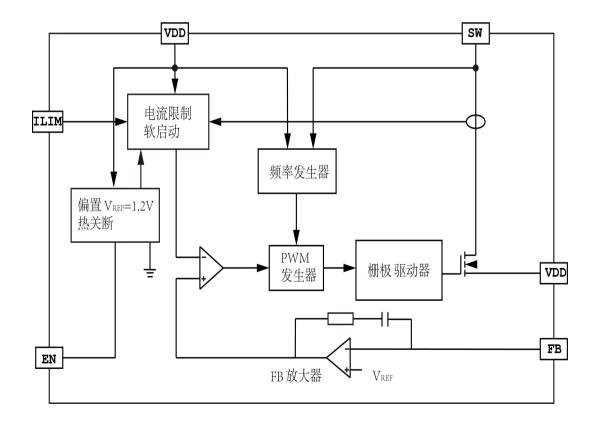

产品特点

- □ 输入电压: 2.3-6V
- □ 高效率: 高达96%
- □ 1.2MHz固定开关频率
- □ 12A的MOSFET开关
- □ 可调电流限制
- □ 欠压锁定
- □ 内置过温保护
- □ 内置软启动

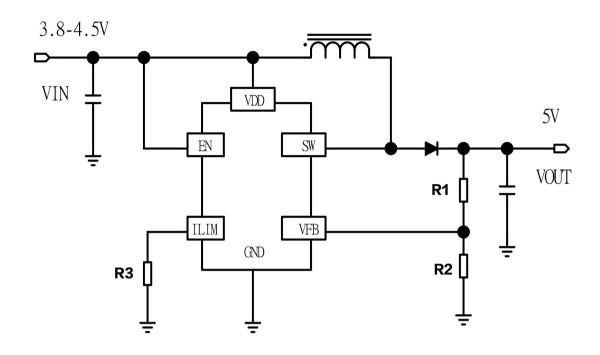
应用领域

- 网络系统
- 医疗设备
- 工业控制
- 消费类电子产品
- 手持设备
- GPS接收器
- DSL调制解调器
- TFT LCD偏置电源
- 便携式设备

管脚定义



管脚功能描述


管脚	字符	管脚描述		
1	SW	开关信号脚		
2	GND	方片接地		
3	FB	文馈信号脚		
4	EN	使能端,高电平有效		
5	VDD	电源端		
6	ILIM	电流限制设置,可以通过模拟电压设置		

电路框图

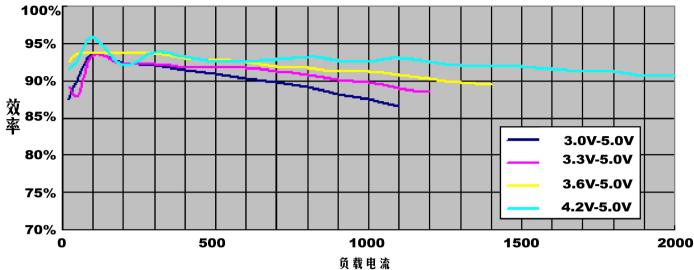
典型应用

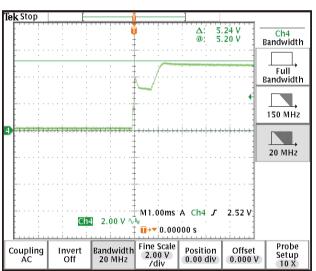
极限应用参数

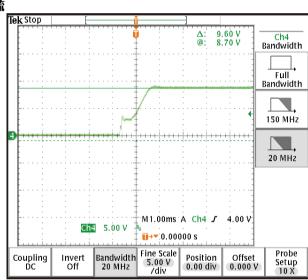
参数名称	标号	测试调件	MIN	TYP.	MAX	Unit
输入电压	VDD		-0.3	-	6.5	V
反馈和使能	V_MAX	FB/EN	-0.3	VIN-	+0.3	V
开关端电压	v_sw		VIN-	+0.3	15V	V
功耗	P_SOP8	P_SOP8		0.8		M
工作环境温度	Ta		-40		85	$^{\circ}$
结温度	Jт				150	$^{\circ}$
存储温度	T_STG		-55		150	$^{\circ}$
焊接温度	T_SD	焊接,10秒左右		300		$^{\circ}$
静电耐压值	V_ESD	人体模型		2		KV

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

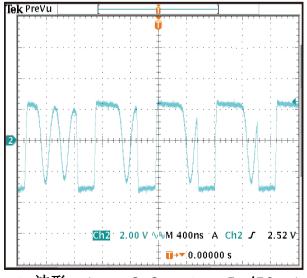
TX4208-V1.0


电气特性 测试条件: VDD=5.5V, TA=25℃,除非另有说明


		_				
参数	标号	条件	最小值	典型值	最大值	单位
工作电压	VDD		2.3		6.0	V
升压输出电压	V_OUT		14			V
UVLO阈值	UVLO		2.1	2.2	2.3	V
工作电流	I_ON_SUPPLY			75	135	uA
关断电流	I_OFF_SUPPLY			0.1	1	uA
反馈电压	V_FB		1.188	1.2	1.212	V
峰值电流限制 N-MOS	I_ILIM	Vcc=0.5V Vin=3.6V Vout=5.0V	0.8	0.95	1.1	А
峰值电流限制 N-MOS	I_ILIM	Vcc=0.6V Vin=3.6V Vout=5.0V	1.5	1.75	2.0	А
峰值电流限制 N-MOS	I_ILIM	R3=168K Vin=3.6V Vout=5.0V	1.8	2.2	2.6	А
峰值电流限制 N-MOS	I_ILIM	R3=120K Vin=3.6V Vout=5.0V	1.05	1.3	2.55	А
振荡频率	Fosc		0.9	1.2	1.5	MHz
N-MOS 内阻	Rds (ON)	I_SW=100mA		0.1	0.2	Ohm
使能启动阀值	V_EN	VIN=2.3-5.5V	0.3	1	1.5	V
使能端泄漏电流	EN_Leakage		-0.1		0.1	uA
开关端泄漏电流	SW_Leakage	VEN=0V VSW=0V-5V VIN=5V			1	uА


典型曲线特征

(L=2.2uH, CIN=22uF COUT=22UF, VOUT=5.0V , R3=168K, 除非另外说明)


启动: (VIN=3.3V VOUT=5V/500mA)

启动: (VIN=3.3V VOUT=9V/500mA)

SW波形: (VIN=3.3V VOUT=5V/1A)

SW波形: (VIN=3.3V VOUT=5V/50mA)

应用指南

该升压转换器用于高达14V的输出电压,开关MAX峰值电流限制为4A。该器件以准恒定频率工作在电流模式下,外部为1.2MHZ,最小输入电压为2.3V。为了控制启动时的浪涌电流,内部设置了一个软启动功能。在导通时间内,电感两端的电压会使电流上升。当电流达到由内部放大器设置的阈值时,功率晶体管关断,存储在电感器中的能量被释放,电流通过肖特基二极管流向升压转换器的输出。一定的输入电压和关断时间是固定的,因此在改变这些参数时保持相同的频率。对于不同的输出负载,电压,频率可能会稍微有所改变,穿过晶体管的内阻功率也会有所改变,这将对电感两端的电压产生影响。由于输出电压不能直接感应,而是通过SW引脚进行检测,从而影响准确度。由于器件的准恒定频率特性,芯片无需内部振荡器和斜率补偿,系统在较宽的输入和输出电压范围内工作,与传统PWM方案的升压转换器相比,更加稳定和精确的限流。芯片还具有非常好的负载和线路调节特性以及出色的负载瞬态响应。

欠压闭锁(UVLO)

为了避免在低输入电压下器件误操作,芯片内部集成了一个欠压锁定装置,如果输入电压低于2.2V芯片将进入欠压保护状态。

热关闭

热关断是防止由于过度的热量和功率耗散而造成器件损坏。典型情况下,热 关断阈值为150℃。当热关断被触发时,器件停止工作,直到温度下降到通常的136 ℃以下。器件将再次开始进行转换工作。

输入电容

输入电容降低了转换器的输入电压纹波,建议使用低ESR陶瓷电容。对于大多数应用,使用22uF或10uF电容。输入电容应尽可能靠近VIN和GND放置。

输出电容

为了保持输出电压纹波比较低,需要使用低ESR输出电容。在陶瓷输出电容的情况下,电容ESR非常小,不会对纹波产生影响,所以当使用陶瓷电容时,电容值可以选一个22uF或两个10uF陶瓷输出电容适用于大多数应用。

输出电压设置

输出电压由分压电阻根据以下公式设置:通常选择R2 = 10K,并根据以下公式确定R1:

$$R1 = R2 * \left(\frac{VOUT}{1.2} - 1\right)$$

电流限制的设置 1 (通过一个模拟电压来设置)

通过一个外部电压来调节SW端的电流限制,如下表是ILIM的典型数据设置 (Vin = 3.6V Vout = 5V) 最好在ILIM引脚并一个0.1uF的电容不要让电压浮动。对于3V~4.2V到5V的1A输出,ILIM典型值是0.62V~0.65V。如果限制电流超过2A,那么IC可能会进入过热保护状态。

最小值		
ILIM电压	ILIM电流	
0.40V	0.20A	
0.45V	0.55A	
0.50V	0.95A	

典型值		
ILIM电压	ILIM电流	
0.55V	1.35A	
0.60V	1.75A	
0.65V	2.20A	

最大值		
ILIM电压	ILIM电流	
0.70V	2.75A	
0.75V	3.20A	
• • •	• • •	

电流限制的设置 1 (通过一个电阻来设置)

通过ILIM引脚相连的电阻来调节SW端的电流限制,如下表是ILIM的典型数据设置 (Vin = 3.6V Vout = 5V) 最好在ILIM引脚并一个0.1uF的电容不要让电压浮动。对于3V~4.2V到5V的1A输出,ILIM电阻典型值是150-170K。如果限制电流超过2A,那么IC可能会进入过热保护状态。

最小值		
ILIM电压	ILIM电流	
100K	0.9A	
120K	1.3A	
130K	1.5A	

典型值		
ILIM电压	ILIM电流	
150K	1.9A	
168K	2.2A	
• • •	• • •	

二极管选择

根据最大输出电压和最大输出电流,可以选择合适的二极管。 为了提高效率通常我们选择低VF肖特基二极管

IF=(1.5~2)* 最大输出电流

VR = (1.5~2) * 最大输出电压。

电感的选择

在正常的应用中,电感保持连续的输出电流。电感电流的纹波取决于电感值。高电感值会降低纹波电流。所以在实际应用中要选择合适电感:

电感值	DRC	外形尺寸		
(uH)	(mOhms)	L*W*H (mm3)		
2.2	0.049			
3.3	0.065	1+1+1 7		
4.7	0.08	4*4*1.7		
10	0.16			

电感值	DRC	外形尺寸
(uH)	(mOhms)	L*W*H (mm3)
2.2	0.03	
3.3	0.044	5*5*2
4.7	0.058	3 ^ 3 ^ 2
10	0.106	

电感值	DRC (mOhms)	外形尺寸		
(uH)		L*W*H (mm3)		
2.2	0.02			
3.3	0.025	C+C+1		
4.7	0.029	6*6*4.5		
10	0.055			

电感值	DRC (mOhma)	外形尺寸
(uH)	(mOhms)	L*W*H (mm3)
2.2	0.017	
3.3	0.027	7.1*6.5*3
4.7	0.036	7.1^0.3^3
/	/	

电感值	DRC	外形尺寸	
(uH)	(mOhms)	L*W*H (mm3)	
2.2	0.061	4.4*4.05	

电感值	DRC (mOhms)	外形尺寸	
(uH)		L*W*H (mm3)	
4.7	0.025	7.3*7.3*4.5	

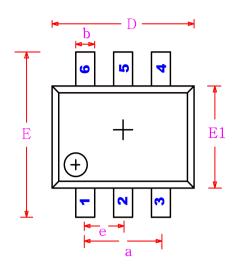
如果输出电压为5V,则可以使用2.2uH~4.7uH 如果输出电压为12V,则4.7uH~10uH

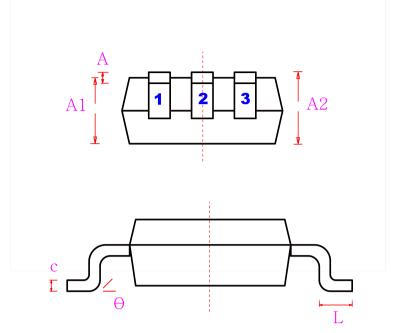
正常应用:

输入3.3V (3.6V或4.2V)

输入5V

输出5V 9V 12V


输出 9V 12V


使用时,根据电流选择电感: 1.5-2*IouT

为了获得更高的效率,需要使用低DRC电感

封装信息 SOT23-6

字符	公制		英制			
	最小	最大	最小	最大		
D	2.820	3.020	0.111	0.119		
E	2.650	2.950	0.104	0.116		
E1	1.500	1.700	0.059	0.067		
е	0.950(BSC)		0.037(BSC)			
а	1.800	2.000	0.071	0.079		
А	0.000	0.100	0.000	0.004		
A1	1.050	1.150	0.041	0.045		
A2	1.050	1.250	0.041	0.049		
L	0.3	0.6	0.012	0.024		
С	0.100	0.200	0.004	0.008		
θ	0°	8°	0 °	8°		