

### 概述

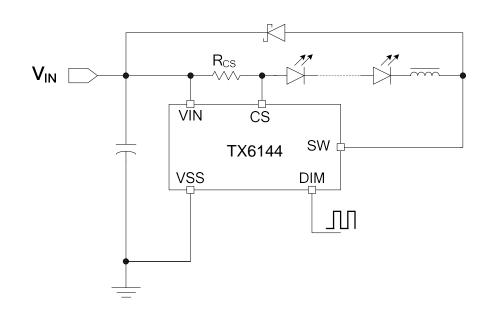
TX6144是一款连续电感电流导通模式的降压型LED恒流驱动器,用于驱动一个或多个LED 灯串。TX6144工作电压从5.5v到30v,提供可调的输出电流,最大输出电流可达到800mA。根据不同的输入电压和外部器件,TX6144可以驱动供高达数十瓦的LED。

TX6144内置功率开关,采用高端电流检测电路,以及兼容PWM和模拟调光的调光脚DIM。 当DIM脚电压低于0.3v时输出关断,进入待机状态。

TX6144内置过温保护电路,当芯片达到过温保护点进入过温保护模式,输出电流逐渐下降以提高系统可靠性。

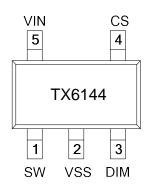
TX6144采用专利的电路架构使得在低压差工作时输出电流无过冲,提高LED工作寿命,TX 6144采用专利的恒流电路具有优异的负载调整率和线性调整率。

TX6144采用S0T23-5封装。


### 特点

- ◆最大输出电流: 800mA
- ◆高效率: 96%
- ◆优异的负载调整率和线性调整率
- ◆高端电流检测
- ◆最大辉度控制频率: 20KHz
- ◆滞环控制, 无需环路补偿
- ◆最高工作频率: 1MHz
- ◆电流精度: ±3%
- ◆ 宽输入电压: 5.5V~30V
- ◆智能过温保护
- ◆低压差无过冲

#### 应用领域


- ◆LED 备用灯,信号灯
- ◆低压 LED 射灯代替卤素灯
- ◆汽车照明

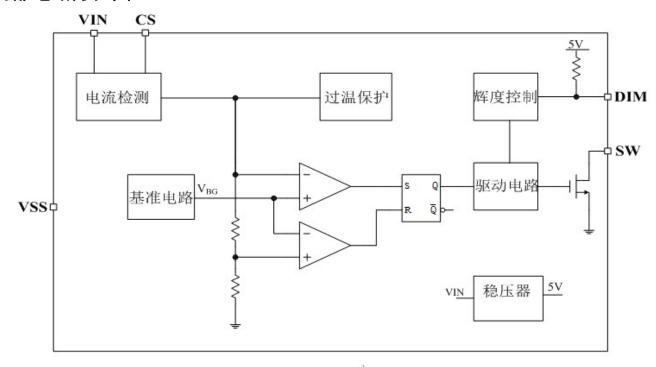
#### 典型应用电路图





# 封装及管脚分配




SOT23-5

# 管脚描述

| 管脚序号 | 管脚名称 | 管脚类型  | 描述         |
|------|------|-------|------------|
| 1    | SW   | 输入/输出 | 内置 MOS 管漏极 |
| 2    | VSS  | 地     | 芯片地        |
| 3    | DIM  | 输入    | 辉度控制端      |
| 4    | CS   | 输入    | 电流检测端      |
| 5    | VIN  | 输入    | 电源电压       |



# 内部电路方框图

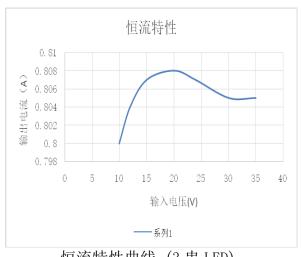


# 极限参数 (注1)

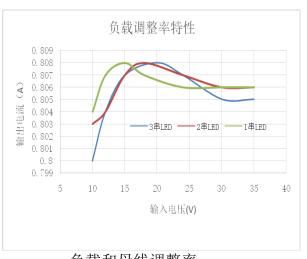
| 参数   | 符号                | 描述                         | 最小值 | 最大值  | 单位   |
|------|-------------------|----------------------------|-----|------|------|
| 电压   | V <sub>MAX1</sub> | IC 各端最大电压值<br>(除 DIM)      |     | 35   | V    |
|      | $V_{MAX2}$        | DIM 引脚最大电压值                |     | 6    | V    |
| 电流   | I <sub>MAX</sub>  | SW 脚最大电流                   |     | 1    | A    |
| 最大功耗 | P <sub>DMAX</sub> | 最大功耗                       |     | 0.5  | W    |
| 热阻   | P <sub>TR2</sub>  | SOT23-5 封装 θ <sub>JA</sub> |     | 80   | °C/W |
|      | $T_{J}$           | 工作结温范围                     | -40 | 150  | °C   |
| 温度   | $T_{STG}$         | 存储温度范围                     | -55 | 150  | °C   |
|      | $T_{SD}$          | 焊接温度(时间少于 30s)             | 230 | 240  | °C   |
| ESD  | $V_{ m HBM}$      | НВМ                        |     | 2000 | V    |

注1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

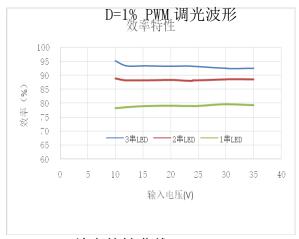



# 电特性

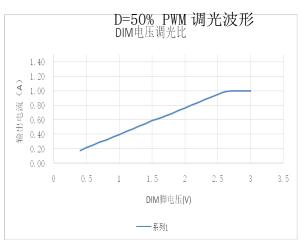
除非特别说明, V<sub>IN</sub> =12V, T<sub>A</sub> =25°C


| 参数           | 符号                                                                       | 测试条件                                                          | 最小值 | 典型值 | 最大值 | 单位  |
|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------|-----|-----|-----|-----|
| 电源电压         |                                                                          |                                                               |     | •   |     | '   |
| 输入电压         | $V_{\rm IN}$                                                             |                                                               | 5.5 |     | 30  | V   |
| 欠压保护电压       | $V_{UVLO}$ $V_{IN} = V_{CS}$ , $V_{DIM} = V_{CC}$ , $V_{IN}$ 电压从 $0V$ 上升 |                                                               |     | 5.1 |     | V   |
| 欠压保护<br>滞回电压 | V <sub>HYS</sub>                                                         |                                                               |     | 0.4 |     | V   |
| 电源待机电流       | $I_{ST}$                                                                 |                                                               |     | 320 |     | uA  |
| 开关频率         |                                                                          |                                                               | 1   |     |     | 1   |
| 最大开关频率       | F <sub>SW_MAX</sub>                                                      |                                                               |     |     | 1   | MHz |
| 电流检测比较器      |                                                                          |                                                               |     |     |     | •   |
| CS 端电压       | VCS                                                                      | VIN-VCS                                                       | 202 | 200 | 208 | mV  |
| 检测电压高值       | $V_{CSH}$                                                                | (V <sub>IN</sub> -V <sub>CS</sub> )从 0.1V 上升,<br>直至 DRV 输出低电平 |     | 240 |     | mV  |
| 检测电压低值       | V <sub>CSL</sub>                                                         | (V <sub>IN</sub> -V <sub>CS</sub> )从 0.3V 下降,<br>直至 DRV 输出高电平 |     | 160 |     | mV  |
| CS 管脚输入电流    | I <sub>CS</sub>                                                          |                                                               |     | 10  |     | uA  |
| 辉度控制         |                                                                          |                                                               |     |     |     | ·   |
| 最大调光频率       | F <sub>DIM</sub>                                                         |                                                               |     |     | 20  | KHz |
| DIM 脚悬空电压    | $V_{DIM}$                                                                | DIM 悬空                                                        |     | 5   |     | V   |
| DIM 输入高电平    | $V_{\mathrm{IH}}$                                                        |                                                               | 2.5 |     |     | V   |
| DIM 输入低电平    | $V_{IL}$                                                                 |                                                               |     |     | 0.3 | V   |
| 模拟调光范围       | $V_{DIM\_DC}$                                                            |                                                               | 0.5 |     | 2.5 | V   |
| DIM 上拉电阻     | $R_{\text{DIM}}$                                                         |                                                               |     | 500 |     | kΩ  |




| 内置 MOS   |                   |            |     |    |
|----------|-------------------|------------|-----|----|
| MOS 导通电阻 | R <sub>DSON</sub> | VIN=6v~30v | 500 | mΩ |
| 过温保护     |                   |            |     |    |
| 过温调节     | OTP_TH            |            | 150 | °C |




恒流特性曲线 (3 串 LED)



负载和母线调整率



效率特性曲线



DIM 线性调光特性曲线



#### 应用指南

#### 工作原理

TX6144 是一款内置 30V 功率开关的高端电流检测降压型高精度高亮度 LED 恒流驱动控制器。系统通过一个外接电阻设定输出电流,最大输出电流可达 0.8A; 电流检测精度高达±3%; 外围仅需很少的元件。

系统上电后, 定义差值:

$$\Delta v = V_{IN} - V_{CS} \tag{1}$$

通过典型应用可以看到,负载 LED 上的电流与电感 L 电流以及电阻  $R_{cs}$  上的电流相等。上电后,电感电流不能突变,故电阻  $R_{cs}$  上的电流为零,于是差值  $\Delta v$  亦为零;此差值输入到芯片内部,与基准电压(240mV)比较后,使得功率开关管开启。于是  $V_{IN}$  通过电阻  $R_{cs}$ ,电感 L,负载 LED 以及功率开关管到地形成通路,电感 L 储存能量,其电流逐渐升高。

当电感电流达到:

$$I_L = \frac{240mV}{R_{CS}} \tag{2}$$

此时,功率开关管关断;之后,差值  $\Delta v$  输入到芯片内部,与基准电压(160 mV)比较后,使得功率开关管保持关断状态。由于电感电流的持续性,电感电流便通过负载 LED 及续流二极管 D,电阻  $R_{CS}$  释放能量,其电流逐渐下降。

当电感电流达到:

$$I_L = \frac{160mV}{R_{CS}} \tag{3}$$

此时,功率管开启;系统进入下一个周期循环。

此系统对于电感电流的控制模式称为电感电流滞环控制模式,其对负载瞬变具有非常快的响应,对输入电压具有高的抑制比,其电感电流纹波为+/-20%。

## 电流取样电阻选择

系统稳定后,可假设负载 LED 上的电压稳定,于是可近似认为电感电流呈线性变化。

故由前面叙述可知,电流取样电阻  $R_{cs}$ 上的电流与负载 LED 上电流相等,于是电阻  $R_{cs}$  的取值决定了负载电流的大小。

$$I_{LED} = \frac{0.24 + 0.16}{2 * R_{CS}} = \frac{0.2}{R_{CS}}$$
 (4)

### 电感选择

电感值的大小决定系统工作频率。稳定时,假设负载 LED 电压为  $V_{LED}$ ,输入电压  $V_{IN}$ ,电感电流纹波  $0.4*I_{LED}$ ,则功率管导通时间:



$$T_{ON} = \frac{0.4 * I_{LED} * L}{V_{IN} - V_{LED}}$$
 (5)

功率管关断时间:

$$T_{OFF} = \frac{0.4 * I_{LED} * L}{V_{LED}} \tag{6}$$

由(5)(6)可得系统工作频率

$$F_{SW} = \frac{(V_{IN} - V_{LED}) * V_{LED}}{0.4 * V_{IN} * I_{LED} * L}$$
(7)

为保证芯片可靠稳定工作,建议其工作频率低于系统最大工作频率 1MHz。

#### 辉度控制

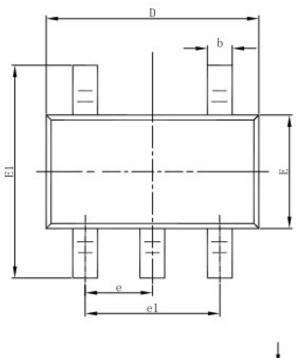
DIM 引脚是辉度控制输入端。DIM 接低电平则 DRV 输出低电平,DIM 接高电平则 DR V 按照一定的占空比正常输出开关信号。为保证辉度控制的线性一致性,建议其最大辉度控制频率低于 20KHz。如果不需要辉度控制功能则将 DIM 端悬空。

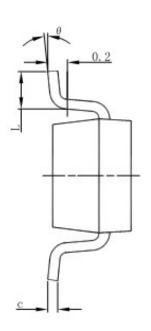
#### 续流二极管选择

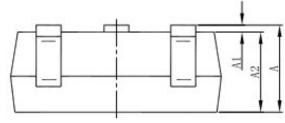
续流二极管 D 的耐压值应高过最大输入工作电压。选择正向导通压降小的肖特基二极管 有助于提高转换效率。

#### 输入电容

电源输入端 V<sub>IN</sub> 需接 22~47uF 的滤波电容, 电容的耐压值应高于最大输入电压。


## 过温保护


当芯片温度过高时,典型情况下当芯片内部温度超过 150 度以上时,过温调节开始起作用:随温度升高输入电流逐渐减小,从而限制输入功率,增强系统可靠性。




# 封装信息

SOT-23-5 封装尺寸:







| Symbol | Dimensions In | Millimeters | Dimensions | In Inches |
|--------|---------------|-------------|------------|-----------|
|        | Min           | Max         | Min        | Max       |
| Α      | 1.050         | 1.250       | 0.041      | 0.049     |
| A1     | 0.000         | 0.100       | 0.000      | 0.004     |
| A2     | 1.050         | 1.150       | 0.041      | 0.045     |
| b      | 0.300         | 0.500       | 0.012      | 0.020     |
| С      | 0.100         | 0.200       | 0.004      | 0.008     |
| D      | 2.820         | 3.020       | 0.111      | 0.119     |
| E      | 1.500         | 1.700       | 0.059      | 0.067     |
| E1     | 2.650         | 2.950       | 0.104      | 0.116     |
| е      | 0.950(BSC)    |             | 0.037(     | BSC)      |
| e1     | 1.800         | 2.000       | 0.071      | 0.079     |
| L      | 0.300         | 0.600       | 0.012      | 0.024     |
| θ      | 0°            | 8°          | 0°         | 8°        |