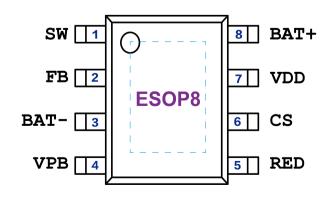


移动电源整体解决方案

概述

TX5807是一款集成了锂电池充电管理、电池保护和升压转换器于一体的充电管理芯片。该芯片可以输出充电电流1A。并可提供升压输出5V/0.8A的带负载能力。芯片采用ESOP8封装。

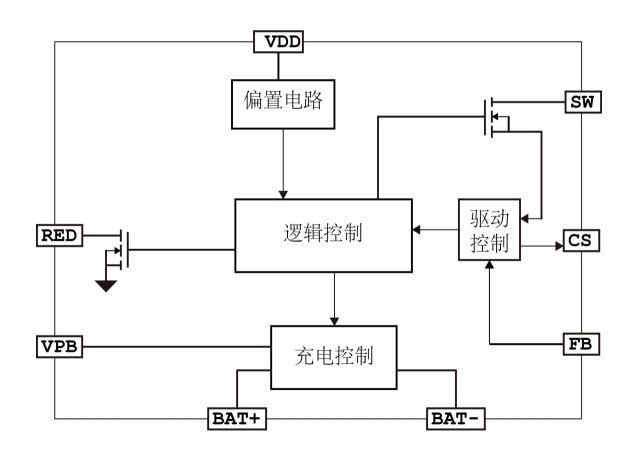

产品特点

- □ 输入电压: 4.5-6.0V
- □ 输出充电恒流恒压: 4.2V
- □ 升压输出: 高达14V
- □ 升压输出: 5V/0.8A
- □ 升压工作频率: 1.2MHz
- □ 充满保护: 4.25V
- □ 欠压保护: 2.9V
- □ 输出电流保护: 3A
- □ 短路保护

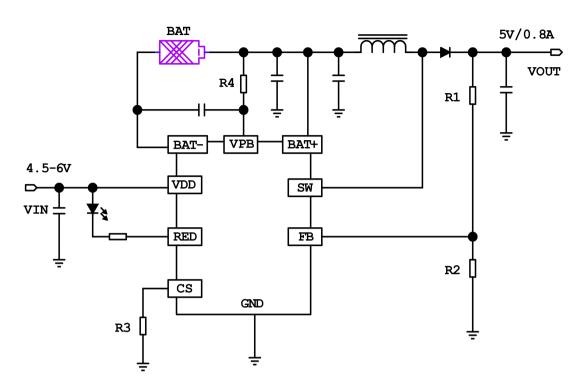
应用领域

- 消费类电子产品
- 便携式设备
- 充电宝
- 无线充电器
- 无线耳机,纽扣电池充电器
- 蓝牙应用,多功能手表
- 移动电源MID, PAD
- 移动电话、PDA、GPS
- 智能手机的移动电源

管脚定义



管脚功能描述


管脚	字符	管脚描述
1	SW	升压转换开关脚
2	FB	升压转换反馈输入端
3	BAT-	锂电池负极
4	VPB	锂电保护部分的电源,该引脚与BAT-之间接0.1uF电容
5	RED	漏极开路充电状态输出,充电时,拉低、充满时,高阻
6	CS	充电电流设置和关机脚
7	VDD	芯片电源输入端
8	BAT+	锂电池正极
9	ΕP	芯片接地,散热片

电路框图

典型应用

极限应用参数

参数名称	标号	测试调件	MIN	TYP.	MAX	Unit
VDD/RED电压	V_MAX		-0.3		7	V
FB/VPB/BAT+/BAB-	V_MAX		-0.3		5	V
SW脚电压	V_SW		VDD-	+0.3	15	V
CS脚电压	V_CS		-0.3	VDD-	+0.3	V
充电电流	I_CH			1.2		А
CS脚电流	I_CS			1.2		mA
工作环境温度	Та		-40		85	$^{\circ}\!\mathbb{C}$
存储温度	T_STG		-65		125	$^{\circ}$
焊接温度	T_SD	焊接,10秒左右		260		${\mathbb C}$
静电耐压值	V_ESD	人体模型		2		KV

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电气特性 测试条件: VDD=5V, TA=25℃,除非另有说明

参数	标号	条件	最小值	典型值	最大值	単位
输入电压	VDD		4.5		6.0	V
充电电压	Vfloat	0°C≤TA≤85°C, Icharge = 40mA	4.158	4.2	4.242	V
CS脚电压	VCS	电流模式: R3 =1k	0.93	1.0	1.07	V
		电流模式: R3 =2k	450	500	550	mA
充电电流	Icharge	电流模式: R3 =1k	900	1000	1100	mA
		待机模式: VBAT=4.2V	0	-2.5	-6	uА
涓流充电电流	Itrikl	VBAT <vtrikl,r3=1k< td=""><td>90</td><td>100</td><td>110</td><td>mA</td></vtrikl,r3=1k<>	90	100	110	mA
涓流充电阈值电压	Vtrikl	VBAT上升, R3 =10K	2.9	2.9	3.0	V
涓流电压滞后电压	Vtrhys	R3 =10K	60	80	110	mV
RED引脚输出低电压	Vred	I_RED = 5mA		0.35	0.6	V
充电电池阈值电压	ΔV recg	Vfloat - Vrechrg		100	200	mV
过充电检测电压	Vcu		4.225	4.25	4.275	V
过充电解除电压	Vcl		4.075	4.100	4.125	V
过放电检测电压	Vdl		2.85	2.9	2.95	V
过放电释放电压	Vdr		2.95	3.0	3.05	V
过充电电流检测	Iiov1	(VBAT+)-(VBAT-)=3.5V	2.1	3.0	3.9	А
负载短路检测	Ishort	(VBAT+)-(VBAT-)=3.5V	10	20	30	А
升压输出电压范围	Vout		14			V
反馈电压	Vfb		1.20	1.225	1.25	V
峰值电感电流	Ipeak			1.6		А
升压转换振荡器频率	Fosc		0.93	1.225	1.5	MHz

应用指南

TX5807 集成锂电池充电器,锂电池保护和升压转换器,输入 5V 电压,为电池充电。电池充满后,从适配器上取下电池。当电池电量耗尽时,我们可以提升到 5V 的充电状态。锂电池充电器可以通过 CS 脚电阻设置充电电流。正常充电电流从 0.5A 到 1A。 当 BAT 电压低于 2.9V 时,进入涓流充电模式保护锂电池。Li-BAT 保护可以检测电池的状态,如 Vcu, Vcl, Temp,并采取措施保护电池 升压部分可以为我们提供 5V/0.8A 的输出给移动设备。

热关断与短路保护

热关断用来防止由于过度的热量和功率耗散而造成损坏。典型的热关断阈值为150℃。当热关断触发时,器件停止开关,直到温度下降到通常的136℃以下。然后器件再次开始切换。如果升压转换器的VOUT与GND短路,IC将关闭,你需要给电池重新充电才能摆脱这种状态。

电感的选择

在正常的操作中, 电感保持连续的输出电流, 电感电流的纹波取决于电感值。高电感降低了纹波电流。

序号	电感量uH	DRC_MAX(Ohms)	尺寸长*宽*高 (mm3)
	2.2	0.049	
L1	3.3	0.065	4*4*1.7
一十十	4.7	0.080	4.4.1.
	10	0.160	
	2.2	0.030	
L2	3.3	0.044	5*5*2
	4.7	0.058	3^3^2
	10	0.106	
L3	2.2	0.017	
	3.3	0.027	7.1*6.5*3
	4.7	0.036	
L4	2.2	0.061	4.4*4.05
L5	4.7	0.025	7.3*7.3*4.5

如果VouT=5V,则可以使用2.2uH~4.7uH,如果VouT=12V,则4.7uH~10uH

正常使用 输入: 3.3V (3.6V-4.2V) 输出: 5V 9V 12V

输入: 5V 输出: 9V 12V

电容的选择

输入电容降低了转换器的输入电压纹波,强烈建议使用低 ESR 陶瓷电容。对于移动电源应用,使用 10uF 陶瓷电容器。输入电容应尽可能靠近 VDD 和GND。为了保持低输出电压纹波,需要使用低 ESR 输出电容。一个 22uF 陶瓷输出电容适用于大多数应用。BAT+ 和 GND 之间需要一个 22uF 陶瓷电容器。如果这个电容远离 BAT+ 引脚,则应尽可能在 BAT+ 引脚和 GND 之间再加一个10uF 陶瓷电容。

充电电流的设置

充电电流通过外接一个1%电阻在CS引脚到地进行调节。当以恒定电流模式充电时,该引脚伺服电压为1V。 在所有模式下,可以使用以下公式来计算充电电流:

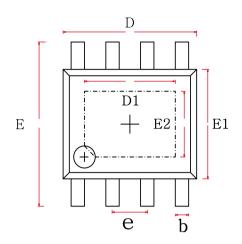
 $I_{BAT} = 1000 * \frac{V_{CS}}{R_{CS}}$

升压输出电压的设置

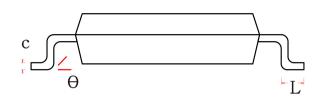
输出电压由电阻分压器根据以下公式设置,通常选择 R2 = 100K, 并从以下公式中计算出 R1。如: R2 = 100K R1 = 310K 则: VOUT= 5V。

$$R1 = R2 * \left(\frac{V_{OUT}}{1.225} - 1 \right)$$

二极管选择


根据 IOUT_max 和 VOUT_max,可以选择合适的二极管。通常我们建议选择低VF肖特基二极管。

$$IF = (1.2 - 2) * I_{OUT}$$
 MAX


$$VR = (1.2 - 2) * V_{OUT_MAX}$$

封装信息 ESOP8

字符	公制 (mm)		英制((inc)		
	最小	最大	最小	最大		
D	4.7	5.1	0.185	0.2		
D1	3.202	3.402	0.126	0.134		
E	5.8	6.2	0.228	0.244		
E1	3.8	4	0.15	0.157		
E2	2.313	2.513	0.091	0.099		
е	1.27		0.05			
b	0.33	0.51	0.013	0.02		
А	0.05	0.25	0.004	0.01		
A1	1.35	1.55	0.053	0.061		
A2	1.35	1.75	0.053	0.069		
L	0.4	1.27	0.016	0.050		
С	0.17	0.25	0.006	0.01		
θ	0°	8°	0°	8°		