

Shenzhen Xindingsheng Technology Co., Ltd

概述

TX4143B 是一款内置功率 MOSFET的单片降压型开关模式转换器。

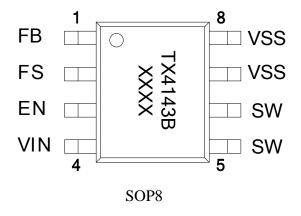
TX4143B在 6-40V 宽输入电源范围内实现 2.5 A最大输出电流,并且具有出色的线电压和负载调整率。

TX4143B 采用 PWM 电流模工作模式,环路易于稳定并提供快速的瞬态响应。

TX4143B 外部提供 FS 脚,可通过外接一个电阻设置工作频率。

TX4143B 集成了包括逐周期电流限制和热关断等保护功能。

TX4143B采用 SOP8 封装, 且外围元器件少。


特点

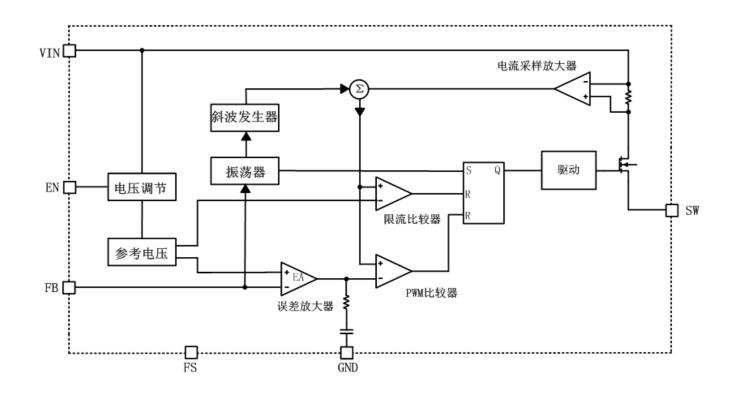
- ◆ 2.5A 的最大输出电流
- ◆ 40V/3A 的内部功率 MOSFET
- ◆ 效率高达 93%
- ◆ 频率可调
- ◆ 热关断
- ◆ 逐周期过流保护
- ◆ 宽输入电压范围: 6~40V
- ◆ 采用 SOP8 封装

应用

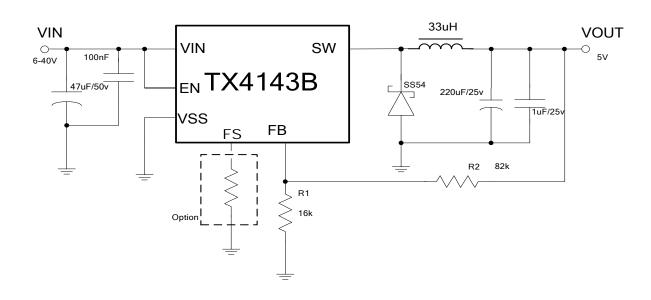
- ◆ 分布式电源系统
- ◆ 电池充电器
- ◆ 工业电源系统
- ◆ 行车记录仪
- ◆ 车载充电器
- ◆ 扫地机

封装及管脚分配

TX4143B



Shenzhen Xindingsheng Technology Co., Ltd


管脚定义

管脚号	管脚名	描述		
1	FB	输出反馈电压脚		
2	FS	工作频率设置脚		
3	EN	芯片使能脚		
4	VIN	芯片电源		
5,6	SW	开关输出脚		
7,8	VSS	接地		

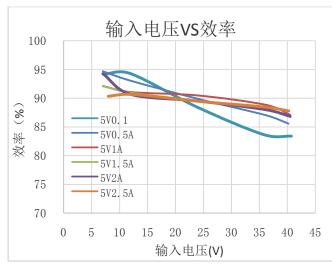
内部电路方框图

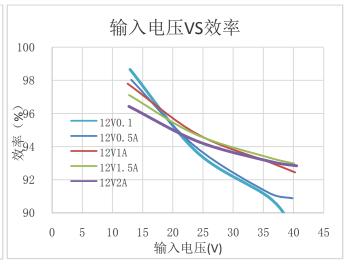
典型应用电路图

极限参数 (注1)

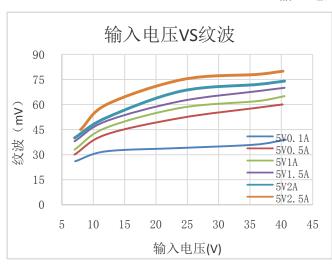
符号	描述	参数范围	单位
Vin	VIN、EN 脚工作电压范围	-0.3~45	V
Vsw	SW 脚工作电压范围	-0.3~VIN+0.3	V
Vmax	FB、FS 脚工作电压范围 -0.3~6		V
IEN_SINK	EN 脚灌电流	100	μА
T_{J}	工作结温范围	-40~125	°C
P _{SOP8}	SOP8 封装最大功耗	0.8	W
${ m T_{STG}}$	存储温度范围	-45~150	°C
T_{SD}	焊接温度范围(时间小于30秒) 260		°C
V_{ESD}	V _{ESD} 静电耐压值(人体模型) 2000		V

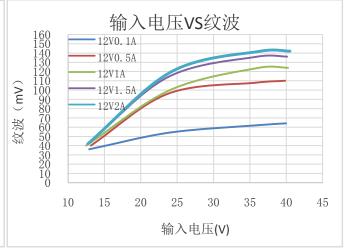
注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。
TX4143B

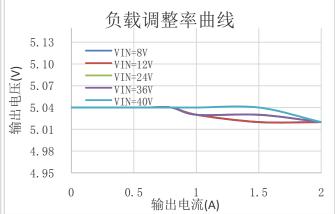




电特性(除非特别说明, V_{IN} =12V, T_A =25 $^{\circ}$ C)


参数	符号	测试条件	最小值	典型值	最大值	单位	
反馈电压	$ m V_{FB}$	6V< V _{IN} < 40V	0.8	0.82	0.84	V	
反馈电流	Iғв	$V_{FB} = 0.85V$			0.1	μА	
开关管漏电流	I _{SW_LKG}	$V_{EN} = 0V, V_{SW} = 0V$			1	μА	
电流限制阈值	I_{LIM}			4.2		A	
任在品限多	f_{SW}	FS 悬空		140		· kHz	
振荡器频率		FS 接 470kΩ 到地		450			
最大占空比	D_{MAX}	$V_{FB} = 0.6V$		95		%	
最小打开时间	T ON			100		ns	
欠压锁定上升电压	U _{UVLO_R}			5.5		V	
欠压锁定迟滞电压	U _{UVLO_HYS}			700		mV	
EN 上升阈值	V _{EN_R}			1.1		V	
EN下降阈值	V _{EN_F}			0.8		V	
EN 迟滞阈值	V _{EN_HYS}			300		mV	
EN 输出电流	I _{EN}	$V_{EN} = 2V$		0.1		μА	
EN 制田电机		Ve N= 0V		0.1			
V _{IN} 关断电流	I_S	$\mathbf{V}_{ ext{EN}}\!=\!0\mathbf{V}$		1		μА	
V _{IN} 静态电流	I_Q	$V_{EN}\!=2V,\;V_{FB}=1V$		0.15	0.2	mA	
热关断	T_{SD}			165		°C	
热关断迟滞	T _{SD_HYS}			20		°C	


典型应用测试特性曲线


输入电压 VS 效率

输入电压 VS 纹波

EN 关机电流

输出电压 VS 输出电流

TX4143B

应用指南

概述

TX4143B是一款电流模式的降压调节器,EA的输出电压与电感的峰值电流成比例。

在周期开始时,功率管M1关断。EA的输出电压大于电流采样放大器的输出,电流比较器的输出为低,CLK上升沿触发RS触发器置高,打开M1将电感通过SW连接到输入电源。

不断增大的电感电流被电流采样放大器采样并放大。斜波补偿叠加到电流采样放大器输出端,并与EA的输出一起送到PWM比较器进行比较。当叠加了斜波补偿的电流采样放大器输出大于EA输出时,RS触发器被重置并关断M1。电感电流经由外部的肖特基二极管D1续流。

反馈电压FB与 0.82V的基准电压通过EA比较,当FB脚电压低于 0.82V时使EA输出增大。 EA的输出电压正比于电感的峰值电流,EA输出电压增大则输出电流也增大。

TX4143B自带 0.6ms的软启动。软启动防止输出电压在启动阶段过冲。在芯片启动时,内部电路产生一个以固定斜率上升的软启动电压SS,当SS低于内部基准电压时,SS被用来做EA的参考电压,内部基准电压被屏蔽。当SS大于内部基准电压时,内部基准电压控制EA。

输出电压设置

通过连接于FB脚的分压电阻R1,R2设置输出电压。反馈电阻(R2)同时还通过内部补偿网络来设置反馈环路的带宽。R1的取值如下:

$$R1 = \frac{R2}{\frac{\text{Vout}}{0.82 \text{ V}} - 1}$$

下表 1 列出了常用输出电压的电阻取值

Vout (V)	R1 (KΩ)	R2 (KΩ)
1.8	52 (1%)	62 (1%)
2.5	40.2 (1%)	82 (1%)
3.3	27.4 (1%)	82 (1%)
5	16 (1%)	82 (1%)
12	6 (1%)	82 (1%)

电感取值

对大多数应用,电感的直流额定电流至少要比最大负载电流大25%。为了达到更高的效率,

电感的直流电阻要小于 200mΩ.电感的取值可有下面的公式计算得到:

$$L = \frac{V_{_{OUT}} \times (V_{_{IN}} - V_{_{OUT}})}{V_{_{IN}} \times \Delta I_{_{L}} \times f_{_{SW}}}$$

其中, ΔΙ, 为电感纹波电流。

电感的纹波电流取值为最大负载电流的30%,电感的最大峰值电流由下面公式计算得到:

$$I_{_{L \text{ (MAX)}}} = I_{_{LOAD}} + \frac{\Delta I_{_{L}}}{2}$$

轻载模式下(低于100mA),可使用一个大感量值的电感来提高效率。

输入电容的取值

输入电容用来减小输入电源的冲击电流并抑制开关噪声。开关频率下输入电容的容抗要小于输入源的阻抗,可以防止高频开关电流流入输入端。可使用低ESR和低温度系数的电解电容,对大多数应用推荐使用 47μ F电解电容并联 100nF陶瓷电容。对于输入电压较高的应用,输入端电解电容还可以抑制开关机时的输入电压尖峰。

输出电容的取值

输出电容可保持小的输出纹波电压,并保证反馈环路的稳定性。在开关频率下必须保证输出电容的容抗足够小。可使用低ESR的电解电容,对大多数应用来说 220µ F的容值就够用了。

输出并接一个低 ESR 陶瓷电容,可以减小输出纹波,输出稳定。

使能控制 EN

使能脚EN用于控制芯片的使能应用,可外加MCU控制,不控制使能的应用,可直接上拉到 VIN脚,不能悬空。

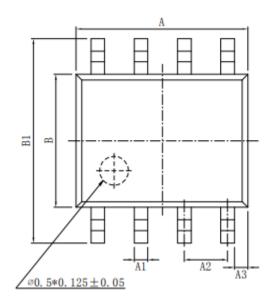
工作频率设置 FS

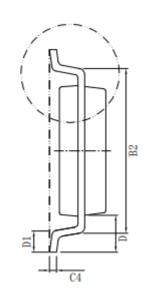
工作频率设置FS用于控制芯片的工作频率,可外接不同的电阻到地,确定不同的工作频率 f_{SW} 。外接电阻 R_{FS} 由下面的公式得到:

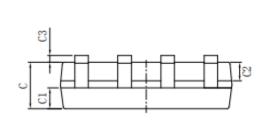
$$R_{FS} = \frac{140}{f_{SW} - 140}$$

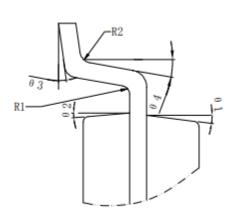
其中, f_{SW} 为工作频率,单位为KHz,建议 f_{SW} 最大取值 500KHz,典型工作频率 140KHz(FS 脚悬空); R_{FS} 单位为 $M\Omega$ 。

PCB 布局注意


PCB布局对电路稳定工作很关键。请遵循以下布局指导:


- 1)保持开关电流通路走线尽可能短并最小化功率环路面积(功率环路由输入电容、MOS和肖特基二极管构成)。
- 2) 功率地 ->肖特基二极管->SW 引脚连接通路应尽可能短和宽。
- 3) 确保反馈电阻靠近芯片,且走线应短。
- 4) SW走线应远离FB反馈信号。
- 5) VIN输入端的 100nF瓷片电容要靠近芯片引脚端。
- 6) VIN, SW, GND 需用大的铜箔连接以改善芯片发热提高长期稳定性。




封装信息

SOP8 封装参数

标注 尺寸	最小(mm)	最大(mm)	标注 尺寸	最小(mm)	最大(mm)
A	4.80	5. 00	C3	0.05	0. 20
A1	0.356	0. 456	C4	0. 203	0. 233
A2	1. 27TYP		D	1. 05TYP	
A3	0. 345TYP		D1	0.40	0.80
В	3. 80	4.00	R1	0. 20TYP	
B1	5. 80	6. 20	R2	0. 20TYP	
B2	5. 00TYP		θ 1	17° TYP4	
С	1. 30	1. 60	θ 2	13° TYP4	
C1	0. 55	0.65	θ 3	0° ~ 8°	
C2	0.55	0.65	θ 4	4° /	~ 12°