

内置 MOS 开关降压型同步整流 DC-DC转换器

概述

TX4114 是一款开关降压型、同步整流DC-DC电源转换芯片。

芯片宽输入电压范围8V到30V,输出电流高达2A。

芯片采用同步整流架构提高了能量的转换效率,开关频率可调从150kHz-500kHz。

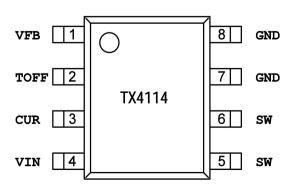
芯片具有良好的带载能力和电压调节特性。

内置MOS的快速瞬态响应提高了芯片工作稳定性。

只需要少量的标准外部元件即可工作。

芯片具有可调的电流限制和智能过温保护功能。

芯片采用标准的SOP-8封装。

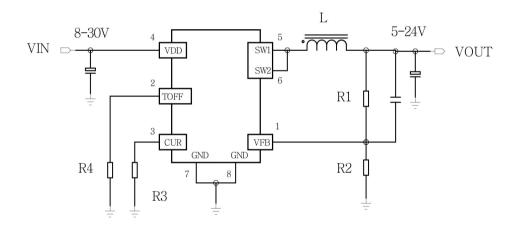

产品特点

- □ 输入电压: 8-30V
- □ 输出电压可调: 5-24V
- □ 输出电流可调: 高达2A
- □ 工作频率可调: 150kHz-500kHz
- □ 转换效率: 高达93%
- □ 内置MOS管
- □ 芯片过温保护
- □ 输出短路保护

应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 线性稳压器的预调节器
- 分布式电源系统
- POE 电源
- 安防设备

管脚定义

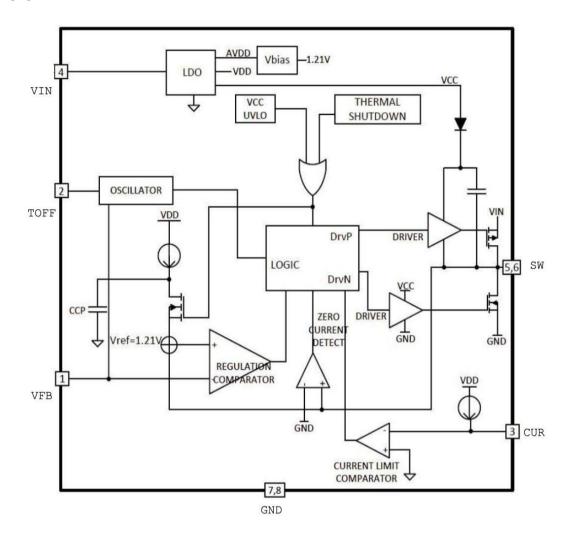


www.xdssemi.com

管脚描述

管脚	名称	管脚描述	
1	VFB	输出电压反馈	
2	TOFF	开关频率设置	
3	CUR	输出电流设置	
4	VDD	芯片电源输入	
5	SW1	电压输出	
6	SW2		
7	GND	接地	
8	GND	1女地	

典型应用



频率设置 R4(kΩ) = 22000 / FOSC(kHz)

电流设置 R3(kΩ) = 29.523*IOUT

电压设置 $VOUT = 1.21*(R1(k\Omega)/R2(k\Omega)+1)$

电路框图

VFB 从输出端取一个反馈电压,接到VFB端。输出电压由R1、R2阻值决定可参考公式计算。

TOFF 内部振荡脚,外接一个电阻对地,调节电阻大小,可以改变输出电压。

CUR 电流检测脚,外接一个电阻对地,调节电阻大小,可以改变输出电流。

VDD 电源输入脚,输入电压范围8-30V,电源端要外接电解滤波电容。

SW 开关电压输出脚,外接电感器和电解电容滤波器。

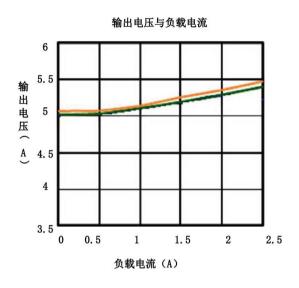
GND 芯片电源接地。

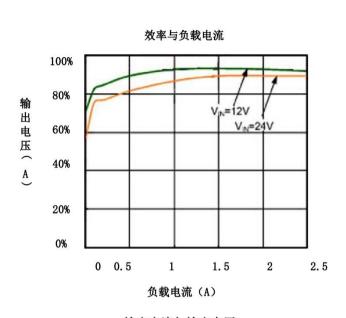
电气特性

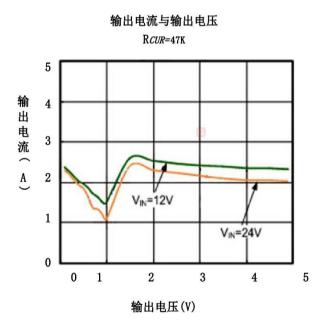
操作条件:TA=25, Vin=12V, R1=470k, R2=150k, 除非另有说明

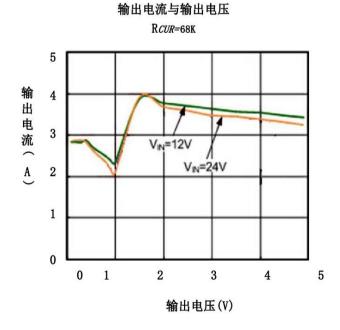
标示	参数	条件	最小值	典型值	最大值	单位
VIN	电压允许范围		8		30	V
ΙQ	静态电流	I <i>load</i> =0A	10		20	mA
Vuvlo	Vuvlo 输入的UVLO阀值				4.5	V
Vuvlo	UVLO滞后				100	mV
V_{FB}	反馈电压		1.18	1.21	1.24	V
Ι <i>FB</i>	反馈电流				0.05	μΑ
Fosc	频率范围		150		500	kHz
		RFRE=100k	180	220	260	kHz
DC	最大工作周期				100	0/0
ILIM.TH	限流端电流		7	8.5	10	μΑ
Rpfet	P沟道场效应晶体管			65		mΩ
Rnfet	N沟道场效应晶体管			30		mΩ
T_{SD}	热保护温度	温度上升		125		$^{\circ}$
T_{SD}	热保护温度现象			30		$^{\circ}\!\mathbb{C}$

极限值

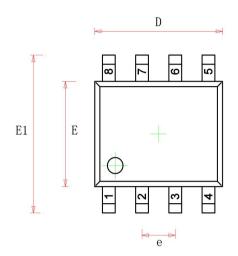

•	输入电压:3.3 ~ 32V
•	VFB, TOFF, CUR: -0.3 ~ 6V
•	SW电压:0.3~32V
•	正常工作温度范围:5℃ ~ 85℃
•	储藏温度:40℃ ~ +150℃
•	结温度范围:+150℃
•	焊锡温度:+256℃

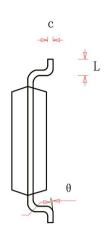

注1: 超出列出的最大值,可能会对芯片造成损坏,长期工作在最大值,可能影响稳定性。

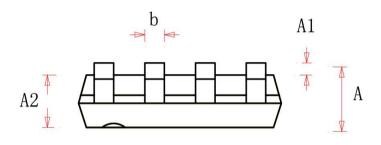

注2: 芯片正常工作环境温度为: 0℃ ~ 70℃,超出范围,可能会影响芯片的稳定性。


典型的性能特征

测试条件: TA=25, CIN=47uF、COUT=100uF、L=47h, 除非另有说明







封装信息 SOP-8L

符号	公	制	英制		
打写	最小	最大	最小	最大	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270		0.050		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0 °	8°	