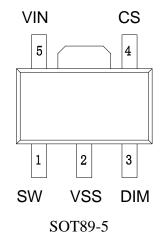


概述

TX6143是一款连续电感电流导通模式的降压型LED恒流驱动器,用于驱动一个或多个LED 灯串。

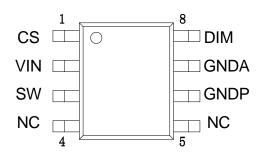
TX6143工作电压从5.5v到60v,提供可调的输出电流,最大输出电流可达到1.2A。根据不同的输入电压和外部器件,TX6143可以驱动供高达数十瓦的LED。

TX6143内置功率开关,采用高端电流检测电路,以及兼容PWM和模拟调光的调光脚DIM。 当DIM脚电压低于0.3v时输出关断,进入待机状态。


TX6143內置过温保护电路,当芯片达到过温保护点进入过温保护模式,输出电流逐渐下降以提高系统可靠性。TX6143采用专利的电路架构使得在低压差工作时输出电流无过冲,提高LED工作寿命,TX6143采用专利的恒流电路具有优异的负载调整率和线性调整率。

TX6143采用S0T89-5和ES0P8封装。

产品特点

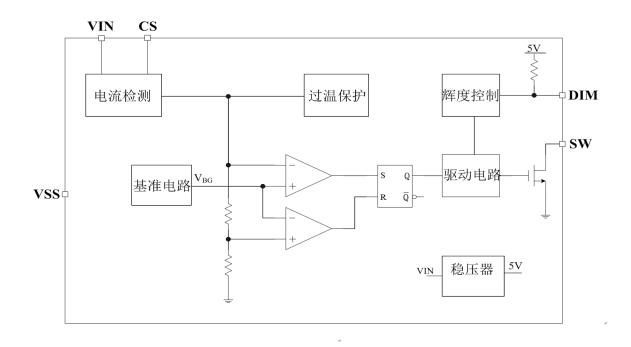

- ◆最大输出电流: 1.2A
- ◆高效率: 97%
- ◆优异的负载调整率和线性调整率
- ◆高端电流检测
- ◆最大辉度控制频率: 20KHz
- ◆滞环控制, 无需环路补偿
- ◆最高工作频率: 1MHz
- ◆电流精度: ±3%
- ◆宽输入电压: 5.5V~60V
- ◆智能过温保护
- ◆低压差无过冲应用领域
- ◆低压LED射灯代替卤素灯

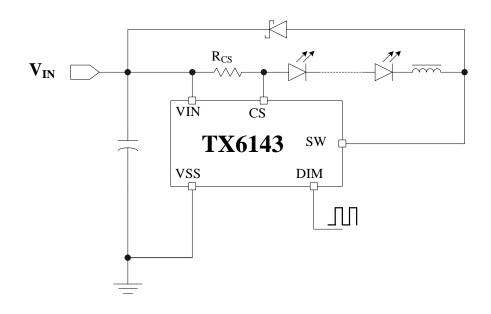
封装及管脚分配

应用领域

- ◆LED备用灯, 信号灯
- ◆汽车照明

ESOP8


TX6143-V1.1


管脚描述

管脚序号		管脚名称	管脚类型	描述	
S0T89-5	ESOP8	目腳石柳	自 脚 矢空	加也	
1	3	SW	输入/输出	内置 MOS 管漏极	
-	4,5	NC	-	悬空不接	
5	2	VIN	电源	电源电压	
4	1	CS	输入	电流检测端	
3	8	DIM	输入	辉度控制端	
2	6,7	VSS	地	芯片地	

内部电路方框图

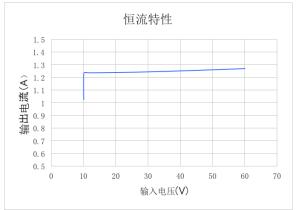
典型应用电路图

极限参数 (注1)

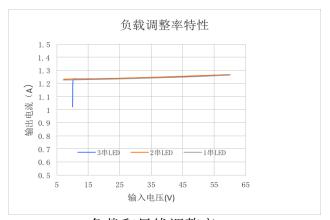
参数	符号	描述	最小值	最大值	单位
电压	V_{MAX1}	IC 各端最大电压值 (除 DIM)		68	V
	V_{MAX2}	DIM 引脚最大电压值		6	V
电流	I _{MAX}	SW 脚最大电流		1.2	A
最大功耗	P _{DMAX}	最大功耗		1.5	W
热阻	P _{TR1}	SOT89-5 封装 θ _{JA}		45	°C/W
	P _{TR2}	ESOP8 封装 θ _{JA}		40	°C/W
	T_{J}	工作结温范围	-40	150	°C
温度	T_{STG}	存储温度范围	-55	150	°C
	T_{SD}	焊接温度(时间少于 30s)	230	240	°C
ESD	V_{HBM}	НВМ		2000	V

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

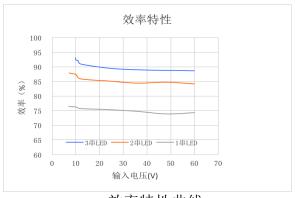
电特性

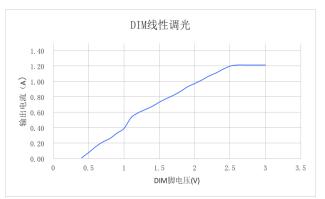

除非特别说明, $V_{\text{\tiny IN}}$ =12V, $T_{\text{\tiny A}}$ =25°C

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源电压							
输入电压 $V_{\rm IN}$			5.5		60	V	
欠压保护电压	V _{UVLO}	V _{IN} =V _{CS} ,V _{DIM} =V _{CC} , V _{IN} 电压从 0V 上升		5.1		V	
欠压保护 滞回电压	V _{HYS}			0.4		V	
电源待机电流	I_{ST}	$V_{IN}=12V$, $V_{DIM}=0V$		320		uA	
开关频率			•	•			
最大开关频率 F _{SW_MAX}					1	MHz	
电流检测比较器							
CS 端电压	VCS	VIN-VCS	202	200	208	mV	
检测电压高值	V _{CSH}	(V _{IN} -V _{CS})从 0.1V 上升, 直至 DRV 输出低电平		240		mV	
检测电压低值	V _{CSL}	(V _{IN} -V _{CS})从 0.3V 下降, 直至 DRV 输出高电平		160		mV	
CS 管脚输入电流	I_{CS}			10		uA	
辉度控制							
最大调光频率	F _{DIM}				20	KHz	
DIM 脚悬空电压	$V_{\rm DIM}$	DIM 悬空		5		V	
DIM 输入高电平	V _{IH}		2.5		5.5	V	
DIM 输入低电平	V _{IL}				0.3	V	
模拟调光范围	V _{DIM_DC}		0.5		2.5	V	
DIM 上拉电阻	R _{DIM}			500		kΩ	

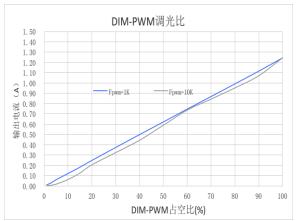


内置 MOS								
MOS 导通电阻	MOS 导通电阻 R _{DSON} VIN=6v~60v 300 mΩ							
过温保护								
过温调节	OTP_TH			150		°C		


典型应用测试特性曲线


恒流特性曲线 (3 串 LED)

负载和母线调整率



效率特性曲线

DIM 线性调光特性曲线

DIM 脚 PWM 调光特性曲线

SW 脚与电感电流工作波形

D=1% PWM 调光波形

D=50% PWM 调光波形

应用指南

工作原理

TX6143 是一款内置 60V 功率开关的高端电流检测降压型高精度高亮度 LED 恒流驱动控制器。系统通过一个外接电阻设定输出电流,最大输出电流可达 1.2A; 电流检测精度高达±3%; 外围仅需很少的元件。

系统上电后, 定义差值:

$$\Delta v = V_{IN} - V_{CS} \tag{1}$$

通过典型应用可以看到,负载 LED 上的电流与电感 L 电流以及电阻 R_{CS} 上的电流相等。上电后,电感电流不能突变,故电阻 R_{CS} 上的电流为零,于是差值 $\Delta \nu$ 亦为零;此差值输入到芯片内部,与基准电压(240mV)比较后,使得功率开关管开启。于是 V_{IN} 通过电阻 R_{CS} ,电感 L,负载 LED 以及功率开关管到地形成通路,电感 L 储存能量,其电流逐渐升高。

当电感电流达到:

$$I_L = \frac{240mV}{R_{CS}} \tag{2}$$

此时,功率开关管关断;之后,差值 Δv 输入到芯片内部,与基准电压(160mV)比较后,使得功率开关管保持关断状态。由于电感电流的持续性,电感电流便通过负载 LED 及续流二极管 D,电阻 R_{CS} 释放能量,其电流逐渐下降。

当电感电流达到:

$$I_L = \frac{160mV}{R_{cs}} \tag{3}$$

此时,功率管开启;系统进入下一个周期循环。

此系统对于电感电流的控制模式称为电感电流滞环控制模式,其对负载瞬变具有非常快的响应,对输入电压具有高的抑制比,其电感电流纹波为+/-20%。

电流取样电阻选择

系统稳定后,可假设负载 LED 上的电压稳定,于是可近似认为电感电流呈线性变化。

故由前面叙述可知,电流取样电阻 R_{cs} 上的电流与负载 LED 上电流相等,于是电阻 R_{cs} 的取值决定了负载电流的大小。

$$I_{LED} = \frac{0.24 + 0.16}{2 * R_{CS}} = \frac{0.2}{R_{CS}} \tag{4}$$

电感选择

电感值的大小决定系统工作频率。稳定时,假设负载 LED 电压为 V_{LED} ,输入电压 V_{IN} ,电感电流纹波 $0.4*I_{LED}$,则功率管导通时间:

$$T_{ON} = \frac{0.4 * I_{LED} * L}{V_{IN} - V_{LED}}$$
 (5)

功率管关断时间:

$$T_{OFF} = \frac{0.4 * I_{LED} * L}{V_{LED}} \tag{6}$$

由(5)(6)可得系统工作频率

$$F_{SW} = \frac{(V_{IN} - V_{LED}) * V_{LED}}{0.4 * V_{IN} * I_{LED} * L}$$
 (7)

为保证芯片可靠稳定工作,建议其工作频率低于系统最大工作频率 1MHz。

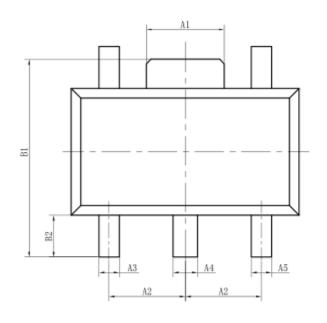
辉度控制

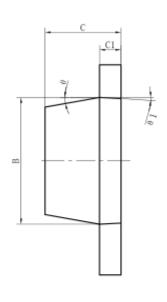
DIM 引脚是辉度控制输入端。DIM 接低电平则 DRV 输出低电平,DIM 接高电平则 DR V 按照一定的占空比正常输出开关信号。为保证辉度控制的线性一致性,建议其最大辉度控制频率低于 20KHz。如果不需要辉度控制功能则将 DIM 端悬空。

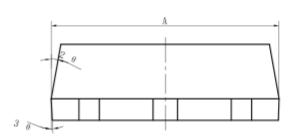
续流二极管选择

续流二极管 D 的耐压值应高过最大输入工作电压。选择正向导通压降小的肖特基二极管 有助于提高转换效率。

输入电容

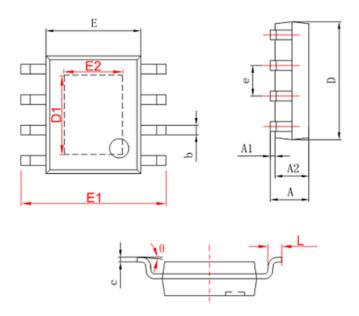

电源输入端 V_N 需接 47uF 至 100uF 的滤波电容, 电容的耐压值应高于最大输入电压。


过温保护


当芯片温度过高时,典型情况下当芯片内部温度超过 150 度以上时,过温调节开始起作用: 随温度升高输入电流逐渐减小,从而限制输入功率,增强系统可靠性。

封装信息

SOT89-5 封装参数



标注	最小(mm)	最大(mm)	标注	最小(mm)	最大(mm)
A	4. 40	4.60	B2	0.80	1.20
A1	1.58	5REF	С	1.40	1.60
A2	1. 50	DBSC	C1	0.37	0.47
A3	0.35	0.45	θ	6	0
A4	0.43	0. 53	θ 1	3	0
A5	0.35	0.45	θ2	6	0
В	2.40	2. 60	θ 3	3	٥
B1	4. 00	4. 40			

ESOP8 封装参数

字符	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 050	0. 150	0.004	0. 010	
A2	1. 350	1. 550	0.053	0.061	
b	0. 330	0. 510	0.013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0.185	0. 200	
D1	3. 202	3. 402	0.126	0. 134	
E	3. 800	4. 000	0.150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0.091	0.099	
е	1. 270	1. 270 (BSC)		(BSC)	
L	0. 400	1. 270	0.016	0. 050	
θ	0°	8°	0°	8°	