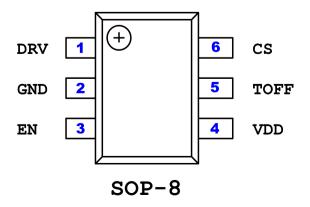


降压型大功率 LED 恒流驱动器

概述

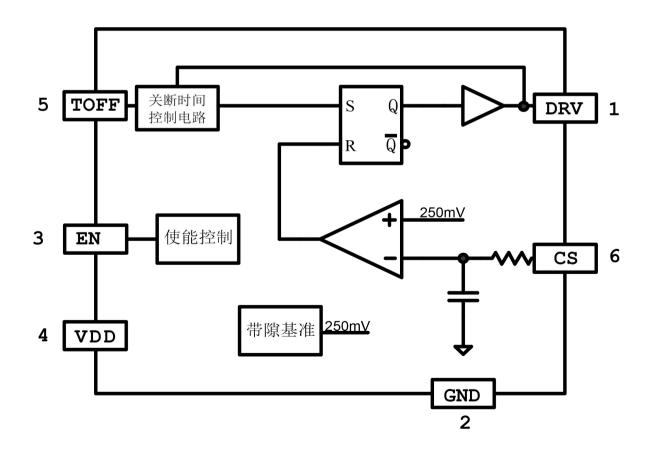
TX6121B 是一款高效率、高亮度 LED 灯恒流驱动控制芯片,内置高精度比较器,固定关断时间控制电路,恒流驱动电路等,特别适合大功率、多个高亮度 LED 灯串的恒流驱动。芯片采用固定关断时间的峰值电流控制方式,其工作频率最高可达 1MHz,可使外部电感和滤波电容体积减小,效率提高。关断时间最小为620ns,并可通过外部电容进行调节,工作频率也可根据用户要求进行调节。外置 VDD稳压管。在 DIM 端加 PWM 信号,可调节 LED 灯的亮度。通过调节外置电流检测电阻的阻值来设置流过 LED 灯的电流,从而设置 LED 灯的亮度,流过 LED 灯的电流可从几十毫安到 2.5 安培变化。芯片采用 SOT23-6 封装。

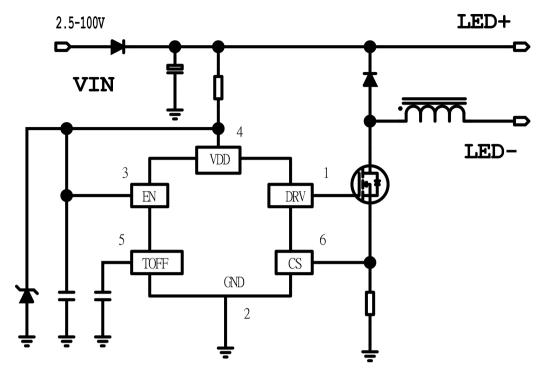

产品特点

- □ 输入电压: 2.5-100V
- □ 内置电流采样前沿消隐电路
- □ 输出电流可调: 高达2.5A
- □ 最高工作频率: 高达1MHz
- □ 转换效率: 高达90%
- □ 亮度可调、DIM端调光
- □ 芯片供电欠压保护: 2.5V
- □ 峰值电流采样电压: 250mV
- □ 対温保护

应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 平板显示器 LED 背光灯
- 电池供电的 LED 灯串
- 自行车灯
- LED 照明


管脚定义


管脚功能描述

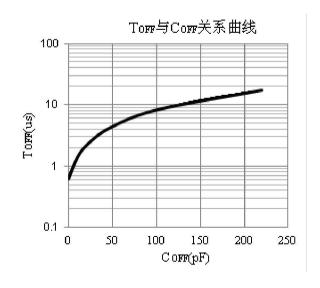
管脚号	字符	管脚描述
1	DRV	驱动端,外接MOS管栅极
2	GND	接地
3	EN	芯片使能端,高电平有效
4	VDD	芯片电源
5	TOFF	关断时间设置
6	CS	输出电流检测反馈脚

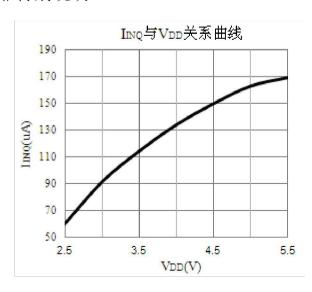
电路框图

原理图

极限应用参数

参数名称	标号	测试调件	MIN	TYP.	MAX	Unit
电源电压	V_MAX		-	_	7	V
EN、DRV、CS、TOFF脚电压	V_MIX/V_MAX	-	-	VDD±	:0.3%	V
最大功耗	θJA	SOT23-6	-	_	0.3	M
结温范围	TJ		-20		125	${\mathbb C}$
工作温度	TA		-20		85	${\mathbb C}$
ESD	V_ESD	静电耐压			2000	V
存储温度	TST		-40	_	125	${\mathbb C}$
焊接温度	/	焊接,10秒	230	_	240	${\mathbb C}$


注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。


电气特性 测试条件: HVDD=15V, TA=25℃,除非另有说明

参数	标号	条件	最小值	典型值	最大值	单位	
电源输入							
最大输入电压	VIN_MAX		2.5	5	6	V	
欠压保护电压	A_naro	vin=Vcs,VDIM=LDO,VIN电 压从0V上升		2.5		V	
电源工作电流	I_OP	F_OP=200KHz		1.3		mΑ	
待机电流	I_INQ			160		uА	
开关频率			-	_		_	
最大开关频率	FSW_MAX			1		MHz	
电流采样							
电流检测阀值	VCS_TH		240	250	260	mV	
芯片关断延时	TD			61		ns	
关 断时间							
最小关断时间	TOFF_MIX	TOFF无外接电容		620		ns	
EN使能端							
EN端高电平			0.4*	VDD		V	
EN端低电平					0.2	V	

典型参数曲线

VDD=5V, TA=25℃, 除非特别说明

应用指南

工作原理

芯片采用峰值电流检测和固定关断时间的控制方式。 电路工作在开关管导通和关断两种状态。当MOS开关管处于导通状态时,输入电压VIN通过LED灯、电感L1、MOS开关管、电流检测电阻RCS对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻RCS上的电压降达到电流检测阈值电压VCS_TH时,控制电路使得DRV输出端变为低电平并关断MOS开关管。当MOS开关管处于关断状态时电感通过由LED灯、续流二极管DFW以及电感自身组成的环路对电感储能放电。MOS开关管在关断一个固定的时间TOFF后,重新回到导通状态,并重复以上导通与关断过程。

TOFF设置

固定关断时间可由连接到TOFF引脚端的电容COFF设定,其中TD=61ns。如果不外接COFF, 芯片内部将关断时间设定为 620ns。

$$T_{OFF} = 0.51*150K\Omega*(C_{OFF} + 7.3pF) + T_D$$

输出电流设置

LED输出电流由电流采样RCS以及TOFF等参数设定,其中VLED是LED的正向导通压降, L1是电感值。

 $I_{LED} = \frac{0.25V}{R_{CS}} - \frac{V_{LED} * T_{OFF}}{2L_1}$

电感取值

为保证系统的输出恒流特性,电感电流应工作在连续模式,要求的最小电感取值为: $L_1 > 4V_{LED} * T_{OFF} * R_{CS}$

系统工作频率

系统工作频率Fs由下式确定:

$$F_{S} = \frac{V_{IN} - V_{LED}}{V_{IN} * T_{OFF}}$$

DIM 调光脚

TX6121B可通过DIM脚进行调光。DIM脚支持PWM调光及线性调光。当DIM脚接地,芯片关断LED输出;当DIM脚电压高过 3.1V,LED输出 100%电流。DIM脚线性调光范围在

1.1-3.1V。当不需要调光功能时,DIM脚应接高电平,DIM脚不允许悬空。在采用线性调光时,DIM脚对地应接一个小电容(例如 10nF以上电容)。

芯片布局考虑

电流检测电阻RCS到芯片CS引脚以及GND引脚的连线需尽量粗而短,以减小连线寄生电阻对输出电流精度的影响。

MOS 管选择

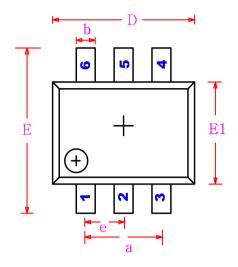
首先要考虑MOS管的耐压,一般要求MOS管的耐压高过最大输出电压的 1.5 倍以上。其次,根据驱动LED电流的大小以及电感最大峰值电流来选择MOS管的 I_{DS} 最大电流应是电感最大峰值电流的 2 倍以上。此外,MOS管的导通电阻 R_{DSON} 要小, R_{DSON} 越小,损耗在MOS管上的功率也越小,系统转换效率就越高。

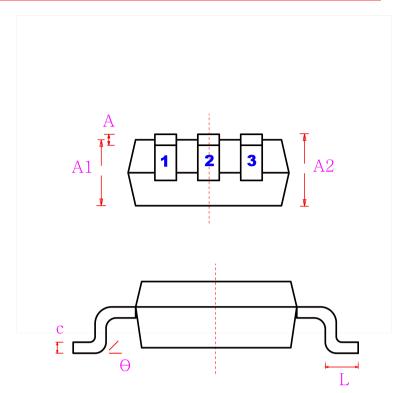
另外,高压应用时应注意选择阈值电压在 2.5V以内的MOS管。芯片的工作电源电压决定了DRV驱动电压。通常芯片的驱动电压为 5.5V,所以应保证MOS管在V_{GS}电压等于 5.5V时导通内阻足够低。

供电电阻选择

TX6121B通过供电电阻R_{VDD}对芯片VDD供电。

$$R_{VDD} = \frac{V_{IN} - VDD}{I_{VDD}}$$


其中VDD取 5.5V, I_{VDD}典型值取 2mA, VIN为输入电压。当开关频率设置的较高或者MOS管的输入电容较大时,芯片工作电流会增大,相应地应减小供电电阻取值。


芯片内部接VDD脚的稳压管最大钳位电流不超过 10mA,应注意R_{VDD}的取值不能过小,以 免流入VDD的电流超过允许值,否则需外接稳压管钳位。

过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

封装信息 SOT23-6

字符	公	制	英制		
	最小	最大	最小	最大	
D	2.820	3.020	0.111	0.119	
E	2.650	2.950	0.104	0.116	
E1	1.500	1.700	0.059	0.067	
е	0.950	(BSC)	0.037(BSC)		
а	1.800	2.000	0.071	0.079	
А	0.000	0.100	0.000	0.004	
A1	1.050	1.150	0.041	0.045	
A2	1.050	1.250	0.041	0.049	
L	0.3	0.6	0.012	0.024	
С	0.100	0.200	0.004	0.008	
θ	0°	8°	0 °	8°	