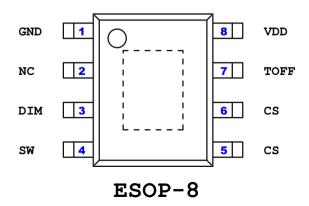


内置 MOS 开关降压型 LED 恒流驱动器

概述

TX6128 是一款内置 100V 功率 MOS高效率、高精度的开关降压型大功率 LED恒流驱动芯片。芯片采用固定关断时间的峰值电流控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。通过调节外置的电流采样电阻,能控制高亮度 LED 灯的驱动电流,使LED 灯亮度达到预期恒定亮度。在 DIM 端加 PWM 信号,可以进行LED 灯调光。DIM 端同时支持线性调光。芯片内部还集成了VDD 稳压管以及过温保护电路等,减少外围元件并提高系统可靠性。芯片采用ESOP8 封装。散热片内置接 SW 脚。


产品特点

- □ 输入电压: 3.6-100V
- □ 内置100V功率MOS
- □ 最高工作频率:高达1MHz
- □ 转换效率: 高达93%
- □ 支持线性和PWM调光
- □ 关断时间可调
- □ 智能过温保护
- □ 内置VDD稳压管

应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 建筑、工业、环境照明
- 电池供电的 LED 灯串
- 平板显示 LED 背光
- LED 照明

管脚定义

TX6128 V1.0

管脚功能描述

管脚号	字符	管脚描述		
1	GND	接地		
2	NC	悬空		
3	DIM	调光脚		
4	SW	开关脚,内接MOS管漏极		
5	CS	电感峰值电流检测		
6	CS	电感峰值电流检测		
7	TOFF	关断时间设置		
8	VDD	芯片电源		
9	EP	散热器,内接SW脚,MOS 漏极		

电路框图

原理图

极限应用参数

参数名称	标号	测试调件	MIN	TYP.	MAX	Unit
电源电压	HVDD	除 DIM\LDO	1	1	5.5	V
DIM/TOFF/CS电压	V_MAX		-	-	VDD±0.3	V
开关脚最大电压	V_SW				100	V
最大功耗	P_ESOP8	ESOP8	_	_	0.8	M
静电耐压	V_ESD				2000	V
工作温度	TA		-20		85	$^{\circ}\mathbb{C}$
存储温度	T_STG	_	-40	_	120	$^{\circ}\!\mathbb{C}$
焊接温度	T_SD	焊接,10秒左右	230	_	240	$^{\circ}\!\mathbb{C}$

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电气特性 测试条件: VDD=5.5V, TA=25℃, 除非另有说明

参数	标号	条件	最小值	典型值	最大值	单位		
电源输入								
VDD 钳位电压	VDD	I_VDD<10mA		5.5		V		
欠压保护电压	A_nafo	VDD上升		3.2		V		
欠压保护迟滞	VDD_HYS			0.5		V		
工作电流	I_OP	F_OP=200KHz		1.5		mA		
待机电流	I_INQ	无负载,EN为低电平		200		uА		
峰值采样电流	峰值采样电流							
VCS阀值	VCS_TH		245	255	265	mV		
关 断时间								
最小关断时间	TOFF_MIX	TOFF无外接电容		650		ns		
DIM调光								
线性调光	V_DIM		1.1		3.1	V		
DIM关断电压	V_OFF			0.9		V		
内置MOS开关管	内置MOS开关管							
MOS管耐压	VDS		100			V		
MOS管导通内阻	R_DSON	VGS=5V		210		m Ω		
过温保护								
过温调节	OTP_TH			140		${\mathbb C}$		

应用指南

工作原理

芯片采用峰值电流检测和固定关断时间的控制方式。 电路工作在开关管导通和关断两种状态。当MOS开关管处于导通状态时,输入电压VIN通过LED灯、电感L1、MOS开关管、电流检测电阻RCS对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻RCS上的电压降达到电流检测阈值电压VCS_TH时,控制电路使得RV输出端变为低电平并关断MOS开关管。当MOS开关管处于关断状态时电感通过由LED灯、续流二极管DFW以及电感自身组成的环路对电感储能放电。MOS开关管在关断一个固定的时间TOFF后,重新回到导通状态,并重复以上导通与关断过程。

TOFF设置

固定关断时间可由连接到TOFF引脚端的电容COFF设定,其中TD=61ns。如果不外接COFF,芯片内部将关断时间设定为650ns。

$$T_{OFF} = 0.51*150K\Omega*(C_{OFF} + 7.3_{P}F) + T_{D}$$

输出电流设置

LED输出电流由电流采样RCS以及TOFF等参数设定, 其中VLED是LED的正向导通压降, L1是电感值。

 $I_{LED} = \frac{0.25V}{R_{CS}} - \frac{V_{LED} * T_{OFF}}{2L_1}$

电感取值

为保证系统的输出恒流特性,电感电流应工作在连续模式,要求的最小电感取值为: $L_1 > 4V_{LED}*T_{OFF}*R_{CS}$

 $L_1 > 4V LED * I OFF * RCS$

系统工作频率

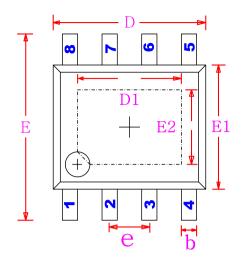
$$F_S = \frac{V_{IN} - V_{LED}}{V_{IN} * T_{OFF}}$$

DIM调光脚

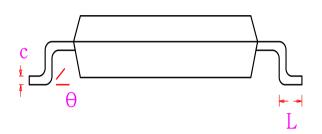
可通过DIM脚进行调光。DIM脚支持PWM调光及线性调光。当DIM脚接地,芯片关断LED输出。当DIM脚电压高过3.1V, LED输出 100%电流。DIM脚线性调光范围在1.1-3.1V。当不需要调光功能时,DIM脚应接高电平,DIM脚不允许悬空。在采用线性调光时,DIM脚对地应接一个10nF以上电容。

供电电阻选择

通过供电电阻RVDD对芯片VDD供电。其中VDD取 5.5V, IVDD典型值取2mA, VIN 为输入电压。当开关频率设置的较高时,芯片工作电流会增大,相应地应减小供电电阻取值。芯片内部接VDD脚的稳压管最大钳位电流不超过 10mA, 应注意RVDD的取值不能过小,以免流入VDD的电流超过允许值,否则需外接稳压管钳位。


过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过140℃以统可靠性。


芯片布局考虑

电流检测电阻RCS到芯片CS引脚以及GND引脚的连线需尽量粗而短,以减小连线寄生电阻对输出电流精度的影响。

封装信息 ESOP8

字符	公制		英制		
	最小	最大	最小	最大	
D	4.7	5.1	0.185	0.2	
D1	3.202	3.402	0.126	0.134	
E	5.8	6.2	0.228	0.244	
E1	3.8	4	0.15	0.157	
E2	2.313	2.513	0.091	0.099	
е	1.	27	0.05		
b	0.33	0.51	0.013	0.02	
				-	
А	0.05	0.25	0.004	0.01	
A1	1.35	1.55	0.053	0.061	
A2	1.35	1.75	0.053	0.069	
L	0.4	1.27	0.016	0.050	
С	0.17	0.25	0.006	0.01	
θ	0 °	8°	0°	8°	