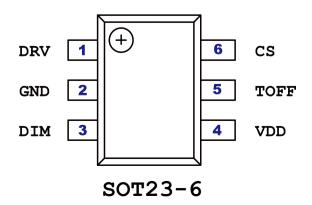


外置MOS开关降压型 LED 恒流驱动器

概述

TX6121 是一款高效率、高精度的降压型大功率 LED 恒流驱动控制芯片。芯片采用固定关断时间的峰值电流控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。通过调节外置的电流采样电阻,能控制高亮度 LED 灯的驱动电流,使LED 灯亮度达到预期恒定亮度。在 DIM 端加 PWM 信号,可以进行LED 灯调光。 DIM 端同时支持线性调光。芯片内部集成了 VDD 稳压管以及过温保护电路,减少外围元件并提高系统可靠性。芯片采用 SOT23-6 封装。

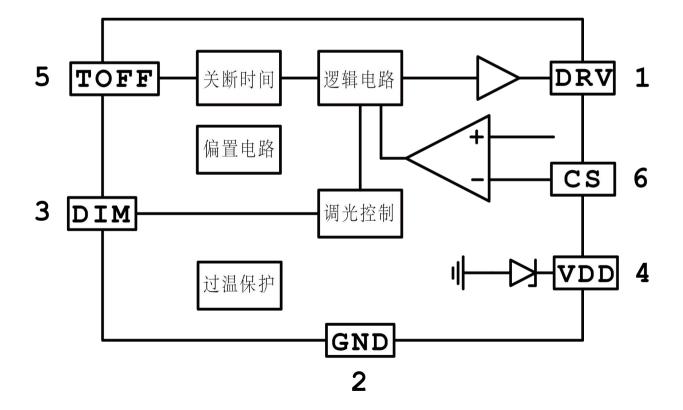

产品特点

- □ 输入电压: 3.6-100V
- □ 高效率: 高达93%
- □ 支持 PWM 调光和线性调光
- □ 最大工作频率: 1MHz
- □ CS 电压: 250mV
- □ 芯片供电欠压保护: 3.2V
- □ 关断时间可调
- □ 智能过温保护
- □ 内置 VDD 稳压管

应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 自行车、电动车、摩托车灯
- 强光手电
- LED 射灯
- 大功率 LED 照明
- LED 背光

管脚定义



TX6121 V1.0


管脚功能描述

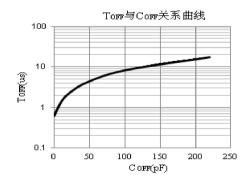
管脚号	字符	管脚描述			
1	DRV	MOS驱动端,外接MOS栅极			
2	GND	接地			
3	DIM	调光脚,低电平关断,>1.3V输出100%电流			
4	VDD	芯片电源			
5	TOFF	关断时间设置			
6	CS	电感峰值电流检测			

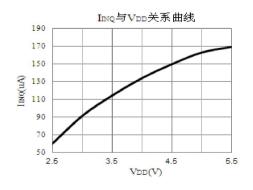
电路框图

原理图

极限应用参数

参数名称	标号	测试调件	MIN	TYP.	MAX	Unit
电源电压	HVDD		_	_	5.5	V
DIM, DRV, TOFF, CS	V_MAX	_	VDD±0.3V			V
最大功耗	θЈА	SOT23-6	_	_	0.3	M
工作温度	TA		-20		85	$^{\circ}$ C
ESD	VHBM	HBM			2000	V
存储温度	TST	I	-40	_	120	$^{\circ}\!\mathbb{C}$
焊接温度	/	焊接,10秒	230	_	240	${\mathbb C}$


注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。


电气特性 测试条件: HVDD=5.5V, TA=25℃,除非另有说明

参数	标号	条件	最小值	典型值	最大值	单位	
电源输入							
VDD 钳位电压	VDD	I_VDD<10mA		5.5		V	
欠压保护电压	A_naro	VDD上升		3.2		V	
欠压保护滞回电压	V_HYS			0.5		V	
电源工作电流	I_OP	FOP=200K	1.3			mA	
待机电流	I_INQ	无负载, EN为低电平	200			uA	
开关频率	开关频率 开关频率						
最大开关频率	FSW_MAX				1	MHz	
峰值电流采样	峰值电流采样						
VCS阀值	VCS_TH		245	255	265	mV	
关断时间							
最小关断时间	TOFF_MIX	TOFF脚无外接电容		650		ns	
DIM调光							
线性调光范围	VDIM		1.1		3.1	V	
DIM关断电压				0.9		V	
DRV驱动							
DRV上升时间	T_RISE	DRV接500P电容			50	ns	
DRV下降时间	T_FALL	DRV接500P电容			50	ns	
最小导通时间	T_ON_MIX		250			ns	
过温保护							
过温调节	OTP_TH			140		${\mathbb C}$	

典型参数曲线

VDD=5V, TA=25℃ , 除非特别说明

TX6121 V1.0

应用指南

工作原理

芯片采用峰值电流检测和固定关断时间的控制方式。电路工作在开关管导通和关断两种状态。当MOS开关管处于导通状态时,输入电压VDD通过LED灯、电感L1、MOS开关管、电流检测电阻RCS对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻RCS上的电压降达到电流检测阈值电压VCS_TH时,控制电路关断MOS开关管。当MOS开关管处于关断状态时,电感通过由LED灯、续流二极管以及电感自身组成的环路对电感储能放电。 MOS开关管在关断一个固定的时TOFF后,重新回到导通状态,并重复以上导通与关断过程。

TOFF设置

固定关断时间可由连接到TOFF引脚端的电容COFF设定,其中TD=61ns。如果不外接COFF,内部将关断时间设定为650ns。

$$T_{OFF} = 0.51 * 150 K\Omega * (C_{OFF} + 8_{P}F) + T_{D}$$

输出电流设置

LED输出电流由电流采样RCS以及TOFF等参数设定,其中VLED是LED的正向导通压降, L1 是电感值。

 $I_{LED} = \frac{0.25}{R_{CS}} - \frac{V_{LED} * T_{OFF}}{2L_1}$

电感取值

为保证系统的输出恒流特性,电感电流应工作在连续模式,要求的最小电感取值为:

 $L_1 > 4V_{LED} * T_{OFF} * R_{CS}$

系统工作频率

系统工作频率FS由下式确定:

$$F_S = \frac{V_{IN} - V_{LED}}{V_{IN} * T_{OFF}}$$

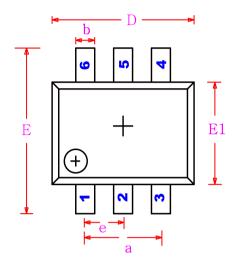
DIM 调光脚

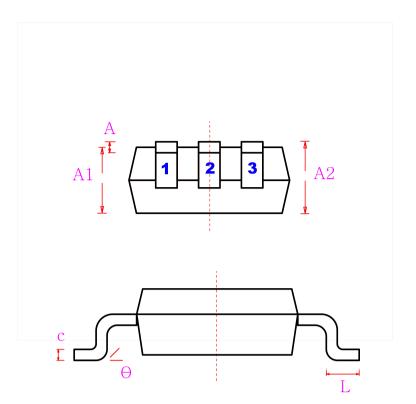
通过DIM脚进行调光。DIM脚支持PWM调光及线性调光。当DIM脚接地,芯片关断LED输出;当DIM脚电压高过 1.1V,LED输出 100%电流。DIM脚线性调光范围在1.3-3.1V。当不需要调光功能时,DIM脚应接高电平,DIM脚不允许悬空。在采用线性调光时,DIM脚对地应接一个小电容(例如 10NF以上电容)。

芯片布局考虑

电流检测电阻RCS到芯片CS引脚以及GND引脚的连线需尽量粗而短,以减小连线寄生电阻对输出电流精度的影响。

供电电阻选择


通过供电电阻RVDD对芯片VDD供电。其中VDD取 5.5V, IVDD典型值取 2mA, VDD 为输入电压。当开关频率设置的较高时,芯片工作电流会增大,相应地应减小供电电阻取值。芯片内部接VDD脚的稳压管最大钳位电流不超过 10mA, 应注意RVDD的取值不能过小,以免流入VDD的电流超过允许值,否则需外接稳压管钳位。


$$R_{VDD} = \frac{V_{IN} - VDD}{I_{VDD}}$$

过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限 制输入功率,增强系统可靠性。

封装信息 SOT23-6

字符	公	制	英制		
	最小	最大	最小	最大	
D	2.820	3.020	0.111	0.119	
E	2.650	2.950	0.104	0.116	
E1	1.500	1.700	0.059	0.067	
е	0.950	(BSC)	0.037(BSC)		
а	1.800	2.000	0.071	0.079	
А	0.000	0.100	0.000	0.004	
A1	1.050	1.150	0.041	0.045	
A2	1.050	1.250	0.041	0.049	
L	0.3	0.6	0.012	0.024	
С	0.100	0.200	0.004	0.008	
θ	0°	8°	0°	8°	