

概述

TX6115是一款高端电流检测降压型高精度高亮度 LED 恒流驱动控制器。

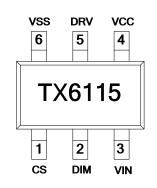
TX6115 通过一个外接电阻设定输出电流,最大输出电流可达 10A;电流精度±3%;外围只需很少的元件就可实现降压、恒流驱动功能,并可以通过 DIM 引脚实现 PWM 调光。

系统采用电感电流滞环控制方式,对负载瞬变具有非常快的响应,对输入电压具有高的抑制比;其电感电流纹波为20%,且最高工作频率可达1MHz。

TX6115 特别适合宽输入电压范围的应用, 其输入电压范围从 5.5V 到 60V。

TX6115内置过温保护电路,当芯片达到过温保护点,系统立即进入过温保护模式,将低输入电流以提高系统可靠性。

TX6115 特别内置了一个 LDO, 其输出电压为 5.5V, 最大可提供 5mA 电流输出。 TX6115 采用小的 SOT23-6 封装。

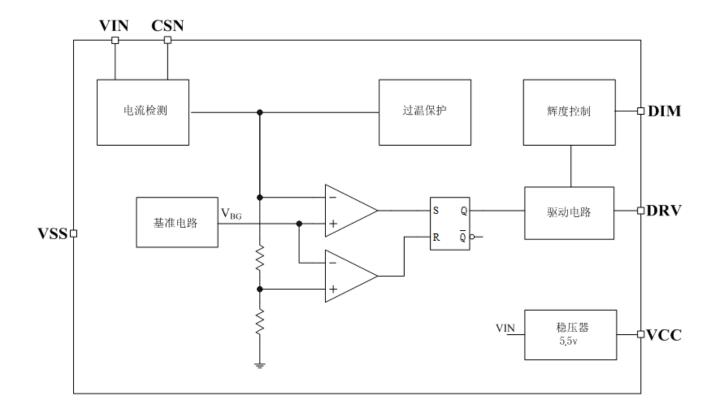

产品特点

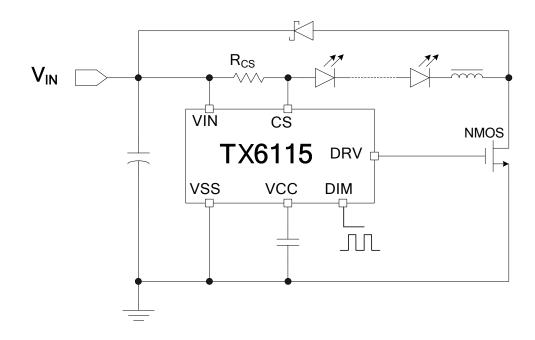
- ◆最大输出电流: 10A
- ◆高效率: 96%
- ◆高端电流检测
- ◆支持 PWM 调光
- ◆滞环控制, 无需环路补偿
- ◆最高工作频率: 1MHz
- ◆电流精度: ±3%
- ◆宽输入电压: 5.5V~60V
- ◆过温保护
- ◆低压差工作时,可保持高稳定性

封装及管脚分配

应用领域

- ◆建筑、工业、环境照明
- ◆MR16 及 LED 灯
- ◆汽车照明


SOT23-6


管脚描述

管脚序号	管脚名称	管脚类型	描述
1	CS	输入	电流检测端
2	DIM	输入	数字 PWM 调光脚
3	VIN	电源	电源电压
4	VCC	输出	5.5V LDO 输出,接电容
5	DRV	输出	功率开关管驱动端
6	VSS	地	地

内部电路方框图

典型应用电路图

极限参数(注1)

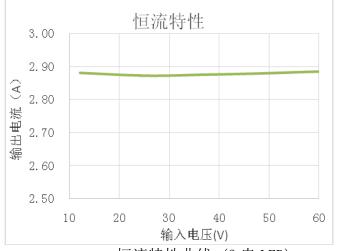
参数	符号	描述	最小值	最大值	单位
电压	V_{MAX1}	VIN, CSN 端最大电压值		66	V
	V _{MAX2}	DIM, VCC, DRV 引脚最大电压值		7	V
最大功耗	P _{SOT23-6}	封装最大功耗		0.3	W
温度	T_{A}	工作温度范围	-40	85	°C
	T_{STG}	存储温度范围	-40	120	°C
	T_{SD}	焊接温度(时间少于 30s)	230	240	°C
ESD	V_{HBM}	НВМ		2000	V

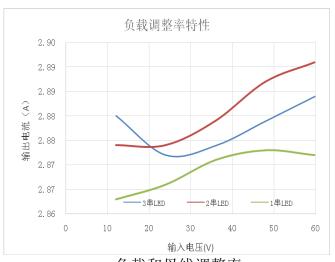
注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电特性

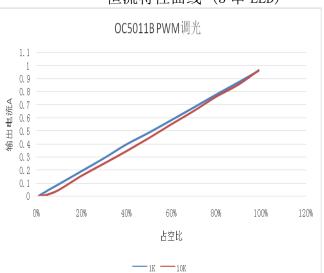
除非特别说明, VIN =15V, C_{CC} =1uF, C_{DRV} =1nF, T_{A} =25°C

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源电压							
最大输入电压	V _{IN_MAX}		5.5		60	V	
欠压保护电压	V _{UVLO}	V _{IN} =V _{CS} ,V _{DIM} =V _{CC} , V _{IN} 电压从 0V 上升		5	5.5	V	
欠压保护 滞回电压	V _{HYS}			0.5		V	
电源工作电流	I_{IN}				5	mA	
电源待机电流	I_{ST}				400	uA	
开关频率	开关频率						
最大开关频率	F _{SW_MAX}				1	MHz	
电流检测比较器							
CS 端电压	VCS	VIN-VCS	190	200	210	mV	
检测电压高值	V_{CSH}	(V _{IN} -V _{CS})从 0.1V 上升, 直至 DRV 输出低电平		240		mV	
检测电压低值	V _{CSL}	(V _{IN} -V _{CS})从 0.3V 下降, 直至 DRV 输出高电平		160		mV	
比较器输入电流	I_{CS}			5		uA	
高电平输出延迟	T_{DPDH}			80		ns	
低电平输出延迟	T_{DPDL}			80		ns	
DIM 脚辉度控制							
最大调光频率	F _{DIM}				20	KHz	
DIM 输入高电平	V _{IH}		2.5			V	
DIM 输入低电平	V _{IL}				0.3	V	

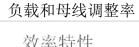


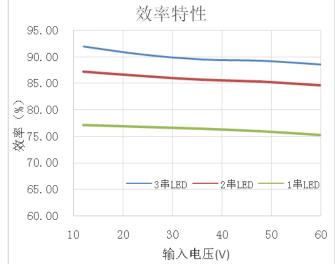

Shenzhen Xindingsheng Technology Co., Ltd

DIM 脚上拉电阻	R_{DIM}			200		KOhm
DIM 输入电流	I_{DIM}	V _{DIM} =0		27.5		uA
LDO 特性						
LDO 输出电压	V_{CC}	V_{IN} =5.5V~36V I_{CC} =0.1mA~5mA		5.5		V
负载调整率		I _{CC} =0.1mA~5mA V _{IN} =12V		4		Ω
线性调整率		$V_{IN}=6V\sim36V$, $I_{CC}=5mA$		11		mV
电源抑制比	PSRR	$V_{IN}=12V$, $I_{CC}=5mA$, $F_{IN}=10KHz$		-35		dB
启动时间	T_{START}	V _{CC} 电压从 0V 到 4.5V		350		us
过温保护						
过温调节	OTP_TH			140		°C



典型应用测试特性曲线





恒流特性曲线 (3 串 LED)

PWM 调光特性曲线

效率特性曲线

应用指南

工作原理

TX6115是一款降压型的高精度高亮度 LED 恒流驱动控制器。系统通过一个外接电阻 设定输出电流,最大输出电流可达 10A; 电流检测精度高达±3%; 外围仅需很少的元件。

系统上电后, 定义差值:

$$\Delta v = V_{IN} - V_{CSN} \tag{1}$$

通过典型应用可以看到,负载 LED 上的电流与电感 L 电流以及电阻 R_{CS} 上的电流相等。上电后,电感电流不能突变,故电阻 R_{CS} 上的电流为零,于是差值 $\Delta \nu$ 亦为零;此差值输入到芯片内部,与基准电压(240mV)比较后,使得功率开关管开启。于是 V_{IN} 通过电阻 R_{CS} ,电感 L,负载 LED 以及功率开关管到地形成通路,电感 L 储存能量,其电流逐渐升高。

当电感电流达到:

$$I_L = \frac{240mV}{R_{CS}} \tag{2}$$

此时,功率开关管关断;之后,差值 Δv 输入到芯片内部,与基准电压(160 mV)比较后,使得功率开关管保持关断状态。由于电感电流的持续性,电感电流便通过负载 LED 及续流二极管 D,电阻 R_{CS} 释放能量,其电流逐渐下降。

当电感电流达到:

$$I_L = \frac{160mV}{R_{CS}} \tag{3}$$

此时,功率管开启;系统进入下一个周期循环。

此系统对于电感电流的控制模式称为电感电流滞环控制模式,其对负载瞬变具有非常快的响应,对输入电压具有高的抑制比,其电感电流纹波为 20%。

电流取样电阻选择

系统稳定后,可假设负载 LED 上的电压稳定,于是可近似认为电感电流呈线性变化。

故由前面叙述可知,电流取样电阻 R_{cs} 上的电流与负载 LED 上电流相等,于是电阻 R_{cs} 的取值决定了负载电流的大小。

$$I_{LED} = \frac{0.24 + 0.16}{2 * R_{CS}} = \frac{0.2}{R_{CS}} \tag{4}$$

电感选择

电感值的大小决定系统工作频率。稳定时,假设负载 LED 电压为 V_{LED} ,输入电压 V_{IN} ,电感电流纹波 $0.2*I_{LED}$,则功率管导通时间:

$$T_{ON} = \frac{0.2 * I_{LED} * L}{V_{IN} - V_{LED}}$$
 (5)

功率管关断时间:

$$T_{OFF} = \frac{0.2 * I_{LED} * L}{V_{LED}} \tag{6}$$

由(5)(6)可得系统工作频率

$$F_{SW} = \frac{(V_{IN} - V_{LED}) * V_{LED}}{0.2 * V_{IN} * I_{LED} * L}$$
 (7)

为保证芯片可靠稳定工作,建议其工作频率低于系统最大工作频率 1MHz。

辉度控制

DIM 引脚是辉度控制输入端。PWM 调光的频率范围从 100Hz 到 20KHz 以上。为保证辉度控制的线性一致性,建议其最大辉度控制频率低于 20KHz。如果不需要辉度控制功能则将 DIM 端与 LDO 的输出端 VCC 短接。

MOS 管选择

MOS 管的耐压值应高过最大输入工作电压。选择导通电阻小的 MOS 管有助于提高转换效率。

续流二极管选择

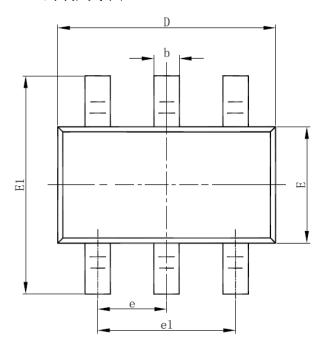
续流二极管 D 的耐压值应高过最大输入工作电压。选择正向导通压降小的肖特基二极管有助于提高转换效率。

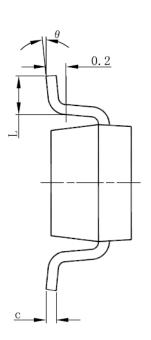
LDO 输出端

LDO 的输出端 VCC 需接一个大于等于 1uF 的电容。LDO 可提供最大 5mA 的输出电流。

输入电容

电源输入端 V_{IN} 需接 47uF 至 100uF 的滤波电容, 电容的耐压值应高于最大输入电压。


过温保护


当芯片温度过高时,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入电流逐渐减小,从而限制输入功率,增强系统可靠性。

封装信息

SOT23-6 封装尺寸图:

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	