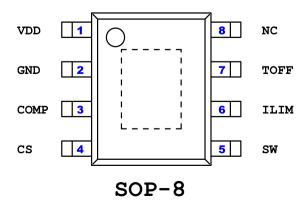


## 高精度、 高效率升降压型 LED 恒流驱动器

## 概述

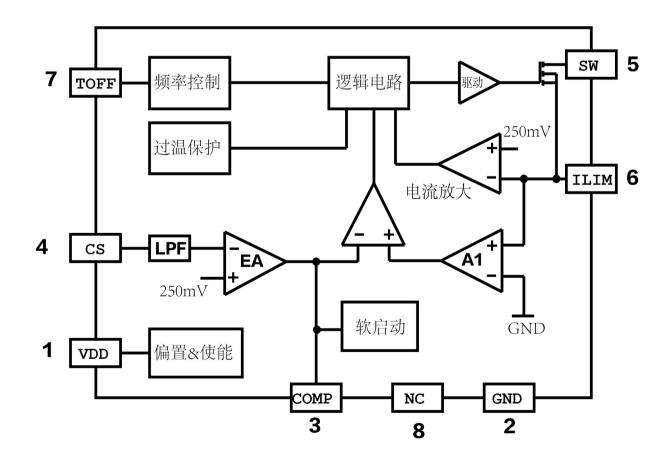
- ◆TX6300 是一款内置 100V 功率 MOS的宽输入输出电压范围的高精度、高效率的升降压型 LED 恒流驱动控制芯片。
  - ◆芯片采用电流模闭环控制方式,可实 现高精度的恒流驱动。
  - ◆工作频率可通过外接电容调整。
  - ◆内置逐周期限流保护, 软启 动, 过温保护等功能, 保证系统可靠性。
- ◆具有稳定可靠、动态响应快等优点,并能实现高精度、高效率升降压恒流驱动。
  - ◆芯片采用 ESOP8 封装, 散热片内置接 SW 脚。


### 产品特点

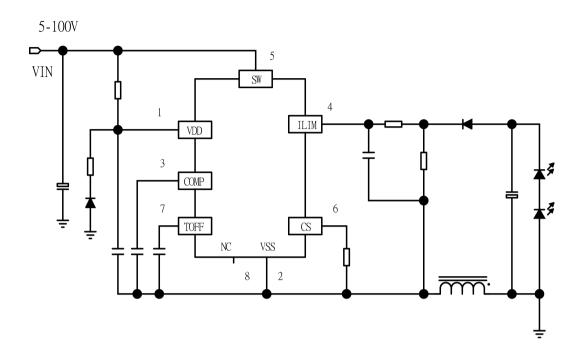
- □ 输入电压: 5-100V
- □ 输出电流可调: 高达1A
- □ 转换效率: 高达93%
- □ 工作频率可调
- □ 优异的母线和负载调整率
- □ 高恒流精度
- □ 智能过温保护
- □ 软启动
- □ 内置VDD稳压管

## 应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 建筑、工业、环境照明
- 电池供电的 LED 灯串
- 平板显示 LED 背光
- LED 照明


## 管脚定义




# 管脚功能描述

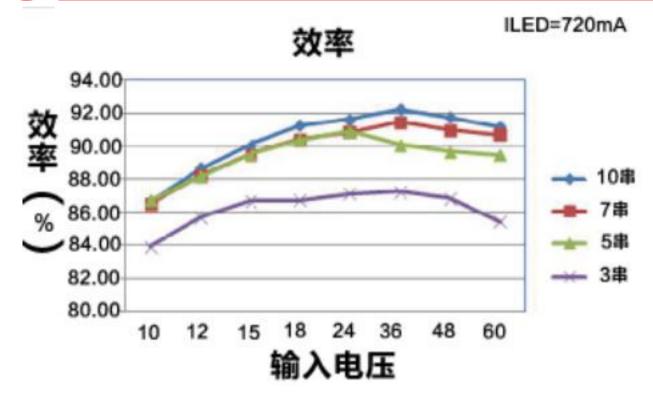
| 管脚号 | 字符   | 管脚描述            |
|-----|------|-----------------|
| 1   | VDD  | 芯片电源            |
| 2   | GND  | 芯片接地            |
| 3   | COMP | 频率补偿,外接电容       |
| 4   | CS   | 输出电流检测脚         |
| 5   | SW   | 开关脚,内接MOS管漏极    |
| 6   | ILIM | 功率管电流限流检测脚      |
| 7   | TOFF | 外接电容,设置开关频率     |
| 8   | NC   | 悬空,不接           |
| 9   | EP   | 散热器,内接SW脚,MOS漏极 |

## 电路框图

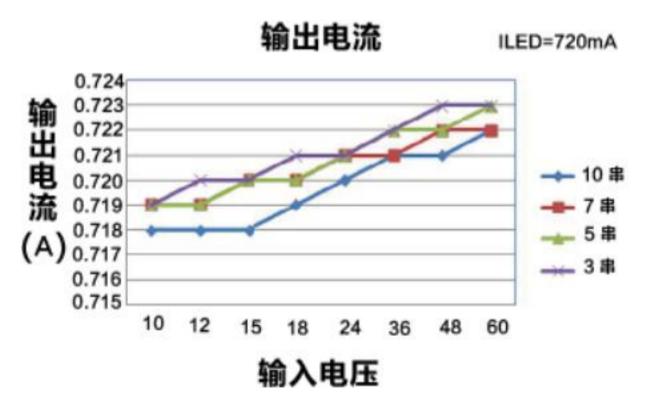


## 原理图

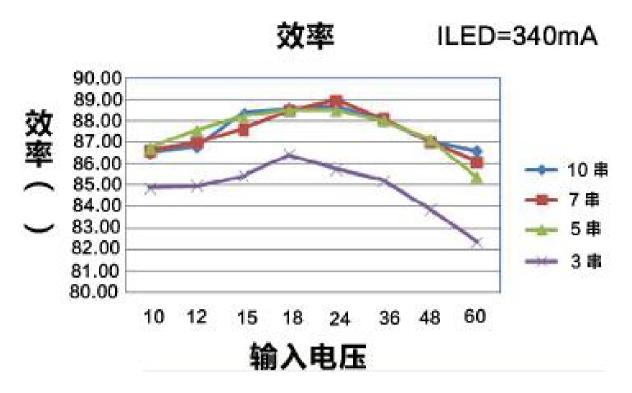



## 极限应用参数

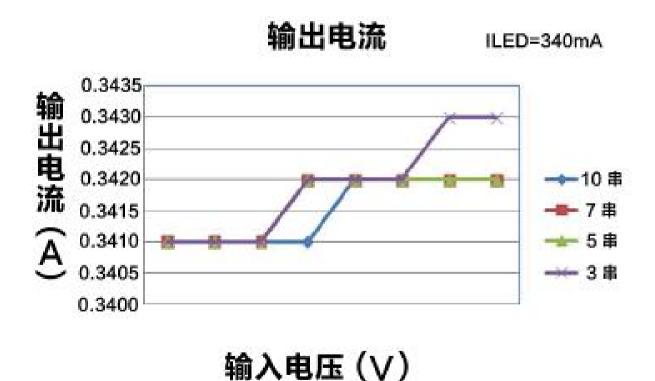
| 参数名称                          | 标号      | 测试调件     | MIN  | TYP. | MAX  | Unit                 |
|-------------------------------|---------|----------|------|------|------|----------------------|
| 电源电压                          | VDD     | VDD_MAX  | 1    | -    | 5.5  | V                    |
| CE/DRV/COMP/ILI<br>M/TOFF/CS脚 | V_MAX   |          | -0.3 | VDD- | +0.3 | V                    |
| 最大功耗                          | P_ESOP8 | ESOP8    | ı    | _    | 0.8  | W                    |
| 工作温度                          | TA      |          | -20  |      | 85   | $^{\circ}\mathbb{C}$ |
| ESD                           | V_ESD   | HBM      |      |      | 2000 | V                    |
| 存储温度                          | T_STG   | _        | -40  | _    | 120  | $^{\circ}\mathbb{C}$ |
| 焊接温度                          | T_SD    | 焊接,10秒左右 | 230  | _    | 240  | $^{\circ}$ C         |


注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

**电气特性 测试条件:** VDD=5.5V, TA=25℃,除非另有说明


| 参数       | 标号      | 条件         | 最小值 | 典型值 | 最大值 | 单位         |
|----------|---------|------------|-----|-----|-----|------------|
| 电源电压     |         |            |     |     |     |            |
| VDD 钳位电压 | VDD     | IVDD<10mA  | 5.  |     |     | V          |
| 欠压保护开启   | VDD_ON  | VDD_上升     |     | 3.2 |     | V          |
| 欠压保护关闭   | VDD_OFF | VDD_下降     |     | 2.7 |     | V          |
| 电源电流     |         |            |     |     |     |            |
| 工作电流     | I_OP    | Fop=200kHz |     | 1   |     | mA         |
| 待机输入电流   | I_INQ   | 无负载,CE为低电平 |     | 200 |     | uA         |
| 电流限流     |         |            | _   | _   |     |            |
| 过流保护阀值   | I_LIM   |            |     | 250 |     | mV         |
| 输出电流采样   |         |            |     |     |     |            |
| CS脚电压    | v_cs    |            | 240 | 250 | 260 | mV         |
| 内置MOS开关管 |         |            |     |     |     |            |
| MOS管耐压   | v_ds    |            | 100 |     |     | V          |
| MOS管导通内阻 | R_DSON  | VGS=5V     |     | 150 |     | m $Ω$      |
| 过温保护     |         |            |     |     |     |            |
| 过温调节     | OTP_TH  |            |     | 140 |     | $^{\circ}$ |




转换效率 VS 输入电压 LED串数量



转换效率 VS 输入电压 LED串数量



转换效率 VS 输入电压 LED串数量



转换效率 VS 输入电压 LED串数量

### 应用指南

芯片内部由高精度误差放大器、PWM 比较器、电感峰值电流限流、开关频率控制、PWM 逻辑、功率管驱动、基准等电路、过温保护、软启动等单元电路组成。芯片通过 CS 管脚来采样LED输出电流。系统处于稳态时 CS 管脚电压恒定在约250mV。当CS 电压低于250mV时,误差放大器的输出电压将升高,从而使得在功率管导通期间电感的峰值电流增大,因此增大了输入功率,CS 电压将会升高。反之,当 CS 电压高过250mV时,误差放大器的输出电压会逐渐降低,从而使得在功率管导通期间电感的峰值电流减小,因此减小了输入功率,CS 电压随之降低。芯片通过TOFF 脚外接电容设置开关频率。增大COMP电容值降低系统工作频率,反之则提高工作频率。COMP管脚是频率补偿脚,外接电容来实现频率补偿,COMP典型取值在200pF~1nF之间。内部集成了VDD稳压管,以及软启动和过温保护电路,以增强系统可靠性。

#### LED电流设置

LED 输出电流由连接到 CS 管脚的反馈电阻 RCS 设定:

$$ILED = \frac{0.25}{R_{CS}}$$

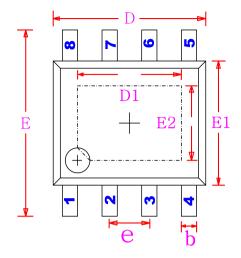
#### 电感取值

电感取值与频率设置有关。一般建议将开关频率设置在 500KHz 以内。电感典型取值在47uH到 100uH 之间,大的电感值可获得小的纹波电流有助于提高效率。另一方面需注意电感的 ESR, ESR 过大会降低效率。

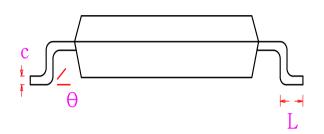
### ILIM限流设置

ILM脚用来设置功率管峰值电流限流, 限流值由下式确定:

$$I_{LIMT} = \frac{0.25}{R_{ILIM}}$$


### 供电电阻选择

芯片内部接 VDD 脚的稳压管最大钳位电流不超过 10mA,应注意 RVDD 的取值不能过小,以免流入 VDD 的电流超过允许值,否则需外接稳压管钳位。


## 过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

# 封装信息 ESOP8







| 字符 | 公制    |       | 英制    |       |  |
|----|-------|-------|-------|-------|--|
|    | 最小    | 最大    | 最小    | 最大    |  |
| D  | 4.7   | 5.1   | 0.185 | 0.2   |  |
| D1 | 3.202 | 3.402 | 0.126 | 0.134 |  |
| E  | 5.8   | 6.2   | 0.228 | 0.244 |  |
| E1 | 3.8   | 4     | 0.15  | 0.157 |  |
| E2 | 2.313 | 2.513 | 0.091 | 0.099 |  |
| е  | 1.27  |       | 0.05  |       |  |
| b  | 0.33  | 0.51  | 0.013 | 0.02  |  |
|    |       |       |       | -     |  |
| А  | 0.05  | 0.25  | 0.004 | 0.01  |  |
| A1 | 1.35  | 1.55  | 0.053 | 0.061 |  |
| A2 | 1.35  | 1.75  | 0.053 | 0.069 |  |
|    |       |       |       |       |  |
| L  | 0.4   | 1.27  | 0.016 | 0.050 |  |
| С  | 0.17  | 0.25  | 0.006 | 0.01  |  |
| θ  | 0°    | 8°    | 0°    | 8°    |  |