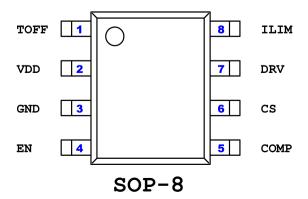


# 高精度、高效率升降压型 LED 恒流驱动器

### 概述

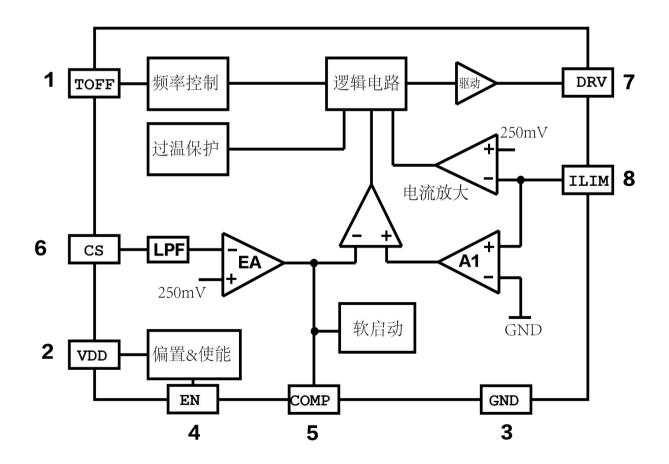
- ●TX6301 是一款宽输入输出电压范围的高精度、高效率的升降压型 LED 恒流驱动控制芯片。
  - ●芯片采用电流模闭环控制方式,可实现高精度的恒流驱动。
- ●工作 频率可通过外接电容调整。内置逐周期限流保护,软启动,过温保护等功能,保证 系统可靠性。
- ●芯片具 有稳定可靠、动态响应快等优点,并能实现高精度、高效率升降压恒流驱动。
  - ●内置 VDD 稳压管,芯片采用 SOP8 封装。


# 产品特点

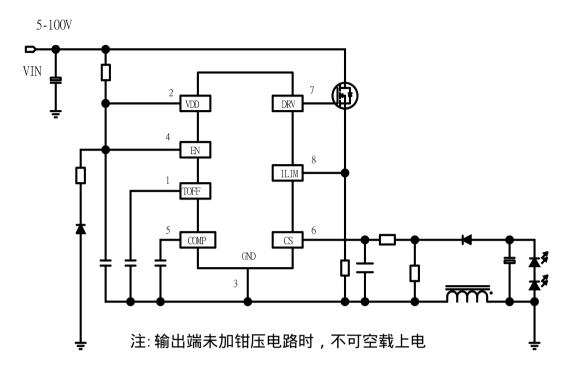
- □ 输入电压: 5-100V
- □ 升降压 LED 恒流驱动
- □ 高恒流精度: 片内 1%
- □ 优异的母线和负载调整率
- □ 输出电流 3A 以上
- □ 高效率:可高达 93%
- □ 工作频率可调
- □ 智能过温保护
- □ 软启动

# 应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 建筑、工业、环境照明
- 电池供电的 LED 灯串
- 平板显示 LED 背光
- LED 照明


# 管脚定义




# 管脚功能描述

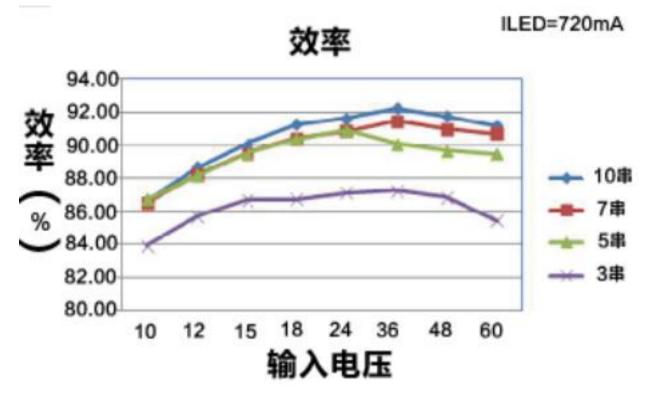
| 管脚号 | 字符   | 管脚描述                            |  |  |
|-----|------|---------------------------------|--|--|
| 1   | TOFF | 外接电容,设置开关频率                     |  |  |
| 2   | VDD  | 芯片电源                            |  |  |
| 3   | GND  | 芯片接地                            |  |  |
| 4   | EN   | 芯片使能,高电平有效,可做PWM调光,需加 <b>隔离</b> |  |  |
| 5   | COMP | 频率补偿,外接电容                       |  |  |
| 6   | CS   | 输出电流检测                          |  |  |
| 7   | DRV  | 外接MOS管栅极                        |  |  |
| 8   | ILIM | 功率管电流检测脚                        |  |  |

# 电路框图

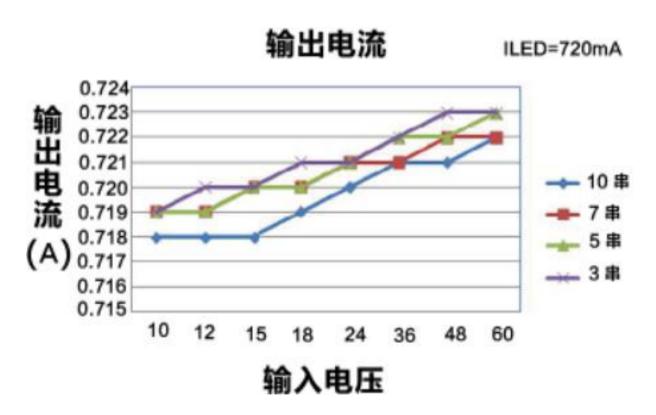


# 原理图




# 极限应用参数

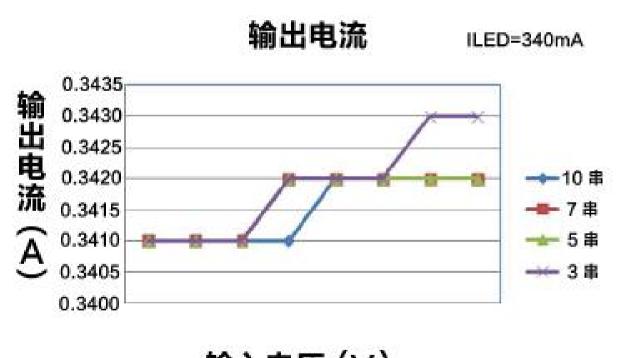
| 参数名称                            | 标号      | 测试调件         | MIN  | TYP. | MAX  | Unit                 |
|---------------------------------|---------|--------------|------|------|------|----------------------|
| 电源电压                            | VDD     | VDD端最大电压     | _    | _    | 5.5  | V                    |
| EN/DRV/CMOP/ILI<br>M/TOFF/CS脚电压 | V_MAX   | -            | -0.3 | VDD- | +0.3 | V                    |
| 最大功耗                            | P_ESOP8 | ESOP8        | -    | _    | 0.8  | M                    |
| 工作温度                            | TA      |              | -20  |      | 85   | $^{\circ}\mathbb{C}$ |
| ESD                             | VHBM    | HBM          |      |      | 2000 | V                    |
| 存储温度                            | TST     | <del>-</del> | -40  | _    | 120  | $^{\circ}\mathbb{C}$ |
| 焊接温度                            | /       | 焊接,10秒       | 230  | _    | 240  | $^{\circ}$           |


注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

**电气特性 测试条件:** VDD=5.5V, TA=25℃,除非另有说明

| 参数       | 标号        | 条件          | 最小值     | 典型值 | 最大值 | 单位           |  |
|----------|-----------|-------------|---------|-----|-----|--------------|--|
| 电源输入     |           |             |         |     |     |              |  |
| VDD 钳位电压 | VIN_MAX   | IVDD<10mA 5 |         | 5.5 |     | V            |  |
| 欠压保护开启   | VDD_ON    | VDD_上升      |         | 3.2 |     | V            |  |
| 欠压保护关闭   | VDD_OFF   | VDD_下降      |         | 2.7 |     | V            |  |
| 电源电流     |           |             |         |     |     |              |  |
| 工作电流     | I_OP      | FOP=200kHz  |         | 1   |     | 1mA          |  |
| 待机输入电流   | I_INQ     | 无负载,EN为低电平  |         | 200 |     | uА           |  |
| 功率管电流限流  | 功率管电流限流   |             |         |     |     |              |  |
| 过流保护阈值   | ILIM      |             | 240     | 250 | 260 | mV           |  |
| 输出电流采样   |           |             |         |     |     |              |  |
| CS脚电压    | v_cs      |             | 240     | 250 | 260 | mV           |  |
| EN使能端输入  |           |             |         |     |     |              |  |
| EN端输入高电平 | H_EN      |             | 0.4*VDD |     |     | V            |  |
| EN端输入低电平 | L_EN      |             |         |     | 0.8 | V            |  |
| DRV驱动    |           |             |         |     |     |              |  |
| DRV上升时间  | T_RISE    | DRV脚接1nF电容  |         |     | 50  | ns           |  |
| DRV下降时间  | T_FALL    | DRV脚接1nF电容  |         |     | 50  | ns           |  |
| 最大导通时间   | T_ON_MAX  |             |         | 50  |     | us           |  |
| 最小关断时间   | T_OFF_MIX |             |         | 0.7 |     | us           |  |
| 过温保护     |           |             |         |     |     |              |  |
| 过温调节     | OTP_TH    |             |         | 140 |     | $^{\circ}$ C |  |




转换效率 VS 输入电压 LED串数量



转换效率 VS 输入电压 LED串数量



转换效率 VS 输入电压 LED串数量



# 输入电压(V)

转换效率 VS 输入电压 LED串数量

### 应用指南

芯片具有很高的恒流精度。内部由高精度误差放大器、PWM 比较器、电感峰值电流限流、开关频率控制、PWM 逻辑、功率管驱动、基准等电路、过温保护、软启动等单元电路组成。芯片通过CS管脚来采样LED输出电流。系统处于稳态时CS管脚电压恒定在约 250mV。当CS电压低于 250mV时,误差放大器的输出电压将升高,从而使得在功率管导通期间电感的峰值电流增大,因此增大了输入功率,CS电压将会升高。反之,当CS电压高过 250mV时,误差放大器的输出电压会逐渐降低,从而使得在功率管导通期间电感的峰值电流减小,因此减小了输入功率,CS电压随之降低。通过TOFF脚外接电容设置开关频率。增大COMP电容值降低系统工作频率,反之则提高工作频率。COMP 管脚是频率补偿脚,外接电容来实现频率补偿,COMP 典型取值在 200pF~1nF 之间。内部集成了 VDD 稳压管,以及软启动和过温保护电路,以增强系统可靠性。

#### LED电流设置

LED 输出电流由连接到 CS 管脚的反馈电阻 Rcs 设定:

$$ILED = \frac{0.25}{R_{CS}}$$

### 电感取值

电感取值与频率设置有关。一般建议将开关频率设置在 500KHz 以内。电感典型取值在47uH到 100uH 之间,大的电感值可获得小的纹波电流有助于提高效率。另一方面需注意电感的 ESR, ESR 过大会降低效率。

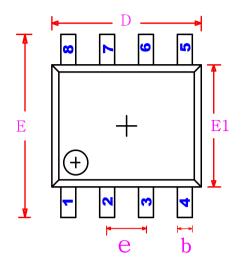
### ILIM限流设置

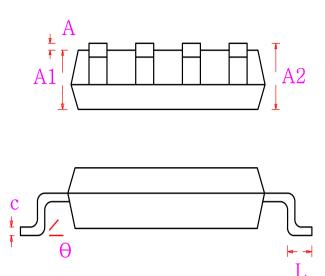
ILM脚用来设置功率管峰值电流限流, 限流值由下式确定:

$$I_{LIMT} = \frac{0.25}{R_{HIM}}$$

首先要考虑MOS管的耐压,一般要求MOS管的耐压高过最大输入电压加上输出电压之和的 1.2 倍以上。其次,根据驱动LED电流的大小以及电感最大峰值电流来选择MOS管的IDS电流。一般MOS管的IDS最大电流应是电感最大峰值电流的 2 倍以上。此外,MOS管的导通电阻RDSON要小,RDSON越小,损耗在MOS管上的功率也越小,系统转换效率就越高。另外,高压应用时应注意选择阈值电压在 2.5V以内的MOS管。芯片的工作电源电压决定了DRV驱动电压。通常芯片的驱动电压为 5.5V,所以应保证MOS管在VGS电压等于 5.5V时导通内阻足够低。

### 供电电阻选择


芯片内部接 VDD 脚的稳压管最大钳位电流不超过 10mA,应注意 RVDD 的取值不能过小,以免流入 VDD 的电流超过允许值,否则需外接稳压管钳位。


### 过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

TX6301-V1.1

# 封装信息 SOP8





| 字符 | 公    | 公制 英制 |       | 制     |  |
|----|------|-------|-------|-------|--|
|    | 最小   | 最大    | 最小    | 最大    |  |
| D  | 4.7  | 5.1   | 0.185 | 0.2   |  |
| E  | 5.8  | 6.2   | 0.228 | 0.244 |  |
| E1 | 3.8  | 4     | 0.15  | 0.157 |  |
| е  | 1.27 |       | 0.05  |       |  |
| b  | 0.33 | 0.51  | 0.013 | 0.02  |  |
|    |      |       |       |       |  |
| А  | 0.05 | 0.25  | 0.004 | 0.01  |  |
| A1 | 1.35 | 1.55  | 0.053 | 0.061 |  |
| A2 | 1.35 | 1.75  | 0.053 | 0.069 |  |
|    |      |       |       |       |  |
| L  | 0.4  | 1.27  | 0.016 | 0.05  |  |
| С  | 0.17 | 0.25  | 0.006 | 0.01  |  |
| θ  | 0 °  | 8°    | 0°    | 8 °   |  |